全书分为三大部分: 主要讨论有关增强数据密集型应用系统所需的若干基本原则。首先开篇第1章即瞄准目标:可靠性、可扩展性与可维护性,如何认识这些问题以及如何达成目标。第2章我们比较了多种不同的数据模型和查询语言,讨论各自的适用场景。接下来第3章主要针对存储引擎,即数据库是如何安排磁盘结构从而提高检索效率。第4章转向数据编码(序列化)方面,包括常见模式的演化历程。 我们将从单机的数据存储转向跨机器的分布式系统,这是扩展性的重要一步,但随之而来的是各种挑战。所以将依次讨论数据远程复制(第5章)、数据分区(第6章)以及事务(第7章)。接下来的第8章包括分布式系统的更多细节,以及分布式环境如何达成一致性与共识(第9章)。 主要针对产生派生数据的系统,所谓派生数据主要指在异构系统中,如果无法用一个数
Stata是一种功能全面的统计分析软件包,具有易操作、运行速度快、功能强大的特点,主要针对经济、管理、医学、农学、教育、市场研究、社会调查等行业和领域,是大数据时代为流行的计量软件之一。 全书内容共分17章。第1、2章介绍Stata操作入门及数据处理基础知识、描述性统计与图形绘制基础。第3~5章介绍假设检验、方差分析、相关分析等基础分析方法。第6~10章通过相关案例介绍经典及放松各种假定条件的回归分析,包括基本线性回归分析、线性回归分析诊断与处理、非线性回归分析、因变量离散回归分析、因变量受限回归分析等应用。第11~16章以典型案例讲解主成分分析与因子分析、聚类分析、时间序列数据分析、面板数据分析、生存分析、多方程模型等高级分析方法。第17章介绍如何使用Stata进行高质量的综合性研究,讲解研究方案设计、调查问卷的制
《SQL Server从入门到精通(第5版)》从初学者角度出发,通过通俗易懂的语言、丰富多彩的实例,详细介绍了SQL Server开发所必需的各方面技术。全书分为4篇共19章,内容包括数据库基础、SQL Server数据库环境搭建、创建与管理数据库、操作数据表、SQL基础、SQL函数的使用、SQL数据查询基础、SQL数据高级查询、视图的使用、存储过程、触发器、游标的使用、索引与数据完整性、SQL中的事务、维护SQL Server数据库、数据库的安全机制、Visual C SQL Server实现酒店客房管理系统、C# SQL Server实现企业人事管理系统和Java SQL Server实现学生成绩管理系统。所有知识都结合具体实例进行介绍,涉及的程序代码给出了详细的注释,读者可以轻松领会SQL Server 2022的精髓,快速提升开发技能。
本书围绕精益创业展开讨论,融合了精益创业法、客户开发、商业模式画布和敏捷/持续集成的精华。本书汇聚了100多位创始人、投资人、内部创业者和创新者的成功创业经验,呈现了 30 多个极具价值的案例分析,可以为各阶段的创业者提供行为准则。 如果你是一名创业者,或者你是一名产品开发、产品管理、市场营销、公共关系和投资领域的商务专业人员,那么本书不容错过。
《中文版 SPSS 28 统计分析从入门到精通(实战案例版)》详细介绍了 SPSS 28 在数据统计分析方面的使用方法 和应用技巧,它是一本 SPSS 基础教程,同时包含了大量的 SPSS 视频教程。 《中文版 SPSS 28 统计分析从入门到精通(实战案例版)》全书共 20 章,内容包括 SPSS 28 概述、初识 SPSS 28、SPSS 数据结构、数据管理、数据分类、数据清洗和数据加工、数据计算、数据分析图表、数据分布的特征分析、参数检验、非参数检验、均值分析、单因素方差分析、多因素方差分析、相关性分析、列联表相关性分析、回归分析、聚类分析、判别分析和电力中断数据分析实例等知识。通过丰富的实例,详细介绍了 SPSS 数据统计分析的全方位知识。本书在讲解过程中理论联系实际,并配有详细的操作步骤,图文对应,可以提高读者的动手能力,并加深对知识点的理解。 《中文版 SPSS 28
目前,大数据成为人们耳熟能详的名词。在人工智能、大数据时代,数据处理、数据分析成为非常重要的工作,但是数据存储在哪里,数据是怎么存储的,数据库的工作原理是什么,面对大量数据,我们应该如何操作,很多人可能并不清楚。本书就用通俗易懂的文字,结合直观清晰的插图,对这些问题的关键技术 数据库相关知识点进行了详细解说。具体内容包括数据库的基础知识 理解数据库的基本概念、数据的存储方式 关系型数据库的特征、操作数据库 SQL的使用方法、管理数据 避免非法数据的功能、引入数据库 数据库的结构与表的设计、运用数据库 旨在安全运用、用于保护数据库的基础知识 故障恢复与安全措施、活用数据库 在应用程序中使用数据库等。本书适合所有对数据、数据库感兴趣的读者学习。
作为一本 Power Query 初级入门读本,《Power Query 智能化数据汇总与分析》不深入介绍 M 函数,而是结合大量的实际案例,利用 Power Query 可视化的操作向导,来解决实际工作中烦琐的数据整理、汇总和分析问题,让读者在短时间内,能够对 Power Query 有一个较为全面的了解和掌握,并能迅速提升数据处理和统计分析效率。 《Power Query 智能化数据汇总与分析》适合具有 Excel 基础知识并经常处理大量数据的各类人员阅读,也可作为大专院校经济类本科生、研究生和 MBA 学员的教材或参考书。
数字技术为企业的管理方式带来颠覆性变革,我们正在经历从依赖企业管理者解读数据并做出业务决策,到由算法通过计算数据做出分析和判断,然后自动指挥业务活动的转变。作为企业管理者,需要思考如何顺应时代趋势,利用数字技术,实现企业管理方式升级,提升管理效率,降低管理费用,提高企业竞争力。撰写本书的主要目的是,帮助企业体系化地推进数字化管理升级。本书的主要内容包括数字技术驱动企业管理方式升级、企业数字化管理体系的四条线、企业数字化管理体系建设七步法、企业数字化管理体系建设实战、企业数字化管理体系建设中的瓶颈与难点、企业数字化管理体系建设的技术架构,以及未来数字智能技术展望。
《Hadoop海量数据处理》从Hadoop的基础知识讲起,逐步深入Hadoop分布式文件系统(HDFS)和MapReduce分布式编程框架的核心技术,帮助读者全面、系统、深入地理解Hadoop海量数据处理技术的精髓。本书在讲解技术原理时穿插大量的典型示例,并详解两个典型项目实战案例,帮助读者提高实际项目开发水平。 《Hadoop海量数据处理》共15章,分为4篇。第1篇Hadoop基础知识,包括大数据概述、Hadoop概述、Hadoop环境搭建与配置;第2篇Hadoop分布式存储技术,包括HDFS概述、HDFS基础操作、HDFS的读写原理和工作机制、Hadoop 3.x的新特性;第3篇MapReduce分布式编程框架,包括MapReduce概述、MapReduce开发基础、MapReduce框架的原理、MapReduce数据压缩、YARN资源调度器、Hadoop企业级优化;第4篇项目实战,包括Hadoop高可用集群搭建实战和统计TopN经典项目案例实战。 《Hadoop海量数据处理》通俗易懂、案
数据是什么?如何应用数据?如何把数据变成更有价值的东西?本书主要适合刚开始使用数据的读者,能让他们对数据的含义、价值及用途有清晰的认识和了解,本书目的是介绍数据的相关知识,同时鼓励人们参与到日益增多的与数据有关的对话中。 本书通过介绍简单数据相关知识,即从一个总体目标、两种思维系统、三大应用领域、四种数据尺度、五种数据分析方法、六种数据展现方式、七种数据活动、八个提前问的问题分别展开阐释数据和分析的方法和思维方式。
本书以统计学史上著名人物的伟大成就为脉络,将数据分析这一学科的发展历程娓娓道来。从开普勒仰望星空拉开统计学序幕,贝叶斯提出主观概率,到人工智能、深度学习逐步渗透今天的日常生活。本书带领读者在数据科学的熠熠星光下,看透大数据的深邃内核。
本书的主要内容有:熟悉Spark的编程模型和生态系统。学习数据科学的一般方法。检查分析大型公共数据集执行步骤的完整性。发现哪些机器学习工具对特定问题有帮助。探索可适应多种用途的代码。
K线图已经成为金融交易平台和图表程序的关键组成部分。使用这些图表,交易者们从中学习基础模式,用于解释价格走势历史,并预测未来市场。这本详细的指南向投资组合经理、量化分析师、策略师和分析师展示了如何使用Python来识别、扫描K线图模式,根据模式进行交易,并回测K线图模式的盈利能力。 金融作家、交易顾问和机构市场策略师Sofien Kaabar在本书中展示了如何创建K线图扫描器和指标,通过这些指标,我们可以比较不同模式的盈利能力。通过这本实践指南,你还将探索一种类似K线图的新型图表系统,以及从未介绍过的新模式。 通过这本书,你将学会: 创建并理解经典和现代K线图模式所需的条件。 学习这些模式背后的市场心理。 使用一个框架来学习如何进行交易策略的回测。 探索不同的图表系统并理解它们的局限性 在Python中导入不同时间框架的OHLC
本书对可视化技术、交互技术以及数据分析方法进行了系统和全面的讲解。介绍了交互式可视化数据分析解决方案的设计标准,论述了设计中的影响因素以及工作流程的检验方法。读者可以从中了解可视化编码的基础知识,以及用于多元数据、时间数据、地理空间数据和图形数据等方面的众多可视化技术。 书中专门用一章的内容来介绍与可视化效果互动的常规概念,并且利用图示来说明现代交互技术如何推动可视化数据分析的发展。针对如今庞大而复杂的数据,本书涵盖了自动化分析计算支持可视化数据分析的相关内容,另外还介绍了多屏幕环境下的高级可视化概念、数据分析过程中的用户指南以及渐进式可视化数据分析等技术。 作者用简洁明了的术语以自上而下的视角解读了交互式可视化数据分析。众多真实案例和丰富的插图将使学生、本领域专家、数据密
编写本书的目的是使读者可以在最z短时间内掌握Excel 数据分析。本书以数据分析的整体流程和知识难易度来安排各章内容及其在全书中的次序,每一章内容都紧密围绕数据分析展开。全书共10 章,每天学习一章,10 天就能学会Excel 中的大多数数据分析工具的用法和技巧。 本书的主要内容包括数据分析的基本概念和流程、Excel 中的数据分析工具的功能和特点、导入外部数据和输入不同类型的数据、修复有问题的数据、设置数据格式、排序、筛选、分类汇总、数据透视表、公式和函数基础知识、提取和格式化文本、汇总和统计数据、计算日期、模拟分析、单变量求解、规划求解、分析工具库、图表的基本概念和基础操作、创建不同类型的图表、导入和刷新数据、使用Power Query 编辑器整理数据、使用Power Pivot 创建数据模型、创建计算列和度量值、销售分析和客户分析等
Apache Flink项目的资深贡献者Fabian Hueske和Vasiliki Kalavri展示了如何使用Flink DataStream API实现可伸缩的流式应用,以及怎样在业务环境中持续运行和维护这些应用。流处理的理想应用场景有很多,包括低延迟ETL、流式分析、实时仪表盘以及欺诈检测、异常检测和报警。你可以在任意类型的持续数据(包括用户交互、金融交易和物联网等数据)生成后,立即对它们进行处理。本书主要内容包括: 了解有关分布式状态化流处理的概念和挑战。 探索Flink的系统架构,包括事件时间处理模式和容错模型。 理解DataStream API的基础知识和构成要素,包括基于时间和有状态的算子。 以精确一次的一致性读写外部系统。 部署和配置Flink集群。 对持续运行的流式应用进行运维。
本书以德国高等教育为例说明数据库的运用。作者有意选择这个简单的例子,是为了便于读者理解和记忆。为方便完成SQL部分的习题,本书还将作者在慕尼黑大学开发的的数据库系统HyPer的Web界面提供给大家使用。 本书也适合自学。因为作者对所有的概念都尽量用易于理解的例子加以说明。 本书仅讨论 现代 数据库系统,对关系模型,我们尤其详细地讲解,因为关系模型现在占据主导地位,使用最为广泛。本书也涉及一些全新的发展趋势,例如主存数据库、大数据技术及利用、XML和云数据库的多租户管理。 本书也包括数据库实现的内容,如DBMS的物理结构、多用户同步的实现及查询评估的恢复和优化方法等。只有掌握这些知识,才能在 硬核 的工业实践中系统地使用和优化数据库。 本书的UML是一种面向对象的数据建模语言,它可以替代ER模型。 本书介绍如何利
利用这本书,你将学习以下内容:了解如何选择Spark转换实现优化的解决方案。探索强大的转换和归约,包括reduceByKey()、combineByKey()和mapPartitions()。理解数据分区以实现优化查询。使用PySpark设计模式构建和应用模型。对图数据应用motif查找算法。使用GraphFrames API分析图数据。对临床医学和基因组数据应用PySpark算法。学习如何在ML算法中使用和应用特征工程。了解并使用实用的数据设计模式。
数据科学伦理是关于人们在进行数据科学方面的行为的道德规范。到目前为止,数据科学主要应用于企业和社会并产生了积极成果。 然而,就像任何技术一样,数据科学也带来了一些负面后果:隐私侵犯的增加,对敏感群体的数据驱动的歧视以及使用不可解释的复杂模型做出决策。 没有哪个数据科学家和业务经理是天生不道德的,只是他们没有接受过培训来考虑他们在工作中的伦理问题 本书旨在填补这个越来越重要的空白和解释不同的概念和技术,帮助读者理解从k-匿名和差别隐私到同态加密和零知识证明等技术已可以解决隐私侵犯问题,消除敏感群体歧视和提供各种可解释的人工智能。 现实生活中的警世故事进一步说明了数据科学伦理的重要性和潜在影响,包括种族主义机器人的故事、搜索审查和人脸识别等。本书中穿插着结构化的练习,提供假设的场景和