本书是一本趣味横生地讲述形式逻辑主题的故事书,融合了众多读者喜闻乐见的逻辑谜题,以一种独特的方式来普及数理逻从 章到第十六章有大量的趣味谜题供读者思考,包括说谎和讲真话的逻辑、沉默的骑士和无赖等,循着本书生动活泼的语言,读者可以由浅入深地了解命题的真假和自指、推理的有效性、集合论语义学、无穷和保有效性以及形式系统的性质等逻辑学基础知识。同时,本书还提供了丰富的练习及答案,这些练习并不拘泥于符号的正确运用,而是重在让读者理解证明的构造过程。本书既可以作为普通读者走入逻辑学大门的科普书,也可以作为大学本科和研究生的补充教材。
本书是作者在为研究生开设代数拓扑学课程的讲义基础上整理而成的,全书共九章,第零章为预备知识,前三章介绍单纯同调论,第四章为当前流行的范畴论,从第五章开始介绍在一般空间上的连续同调论。后四章是CW空间、一般系数的同调论、乘积空间的同调论和Steenrod运算。本书论述严谨,深入浅出,作者力图从较直观的几何概念出发引出极为抽象的概念。
《物理学的进化》是著名科学家、物理学奠基,主要介绍物理学观念从伽利加略牛顿时代的经典理论发展到现代的场论、相对论和量子论的演变情况。其中选择了几个主要的转折点来阐明经典物理学的命运和现代物理学中建立新观念的动机,从而指引读者怎样运河找寻观念世界和现象世界的联系。《物理学的进化》问世后,物理学有了空前的发展,不过这《物理学的进化》只是讨论物理学的重要观念,它们在本质上并没有变化,仍然适合读者阅读。
本书论述了自17世纪以来的数理统计学发展的简要历史,内容包括概率基本概念的起源和发展,棣莫弗的二项概率正态逼近,贝叶斯关于统计推断的思想,最小二乘法,误差分布,社会统计学家对数理统计方法的主要贡献,高尔顿引进相关回归及皮尔逊将其完善的过程,戈塞特等人对小样本理论的贡献,皮尔逊等人发展假设检验这一分支的过程等。本书可供具备初等概率统计知识的读者阅读。
《物理学的进化》是著名科学家、物理学奠基,主要介绍物理学观念从伽利加略牛顿时代的经典理论发展到现代的场论、相对论和量子论的演变情况。其中选择了几个主要的转折点来阐明经典物理学的命运和现代物理学中建立新观念的动机,从而指引读者怎样运河找寻观念世界和现象世界的联系。《物理学的进化》问世后,物理学有了空前的发展,不过这《物理学的进化》只是讨论物理学的重要观念,它们在本质上并没有变化,仍然适合读者阅读。
针对当前高等数学教学的现状分析,《高等数学的教学改革策略研究》一书应需而生。本书主要围绕高等数学的教学思想改革策略研究、高等数学的教学内容改革策略研究、高等数学的教学主体改革策略研究、高等数学的教学目标改革策略研究、高等数学的教学方法改革策略研究、高等数学的教学模式改革策略研究、高等数学的教学评价改革策略研究、高等数学的教学实践改革策略研究等内容进行了阐述,以期通过本书的分析研究,能够对高等数学的教学改革有所助益。
《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的适用对象包括:中学信息学奥林匹克竞赛选手及辅导老师、大学ACM程序设计比赛选手及教练、高等院校计算机相关的师生、程序设计爱好者等。数学是计算机程序设计的灵魂。利用数学方面的知识、数学分析的方法以及数学题解的技巧,可以使得程序设计变得轻松、美观、高效,而且往往能反映出问题的本质。在外各项程序设计比赛(比如,ACM、NOI)活动中,越来越多地用到各种复杂的数学知识,对选手的数学修养要求越来越高。编写《青少年信息学奥林匹克竞赛实战辅导丛书:信息学奥赛之数学一本通》的目的就在于给广大ACM队员、NOI选手以及编程爱好者,分析一些程序设计中常用的数学知识和数学方法。
数理逻辑是计算机科学的基础之一,在模型与系统的规约与验证等方面有着广泛的应用。随着当今软硬件产品日趋复杂,数理逻辑已经成为越来越多设计开发人员的日常工具。 本书适合作为高等院校计算机及相关专业的数理逻辑/形式化方法课程教材,涵盖了命题逻辑,谓词逻辑、模态逻辑与 Agent、二元决策图、模型检查和程序验证等内容。与传统数理逻辑教科书相比,它的主要特色就是紧紧围绕软硬件规约和验证这一主题,反映了计算机科学中数理逻辑的新发展和实际需要。第2版新增了可满足性算法,紧致性理论和Lowenhenm-Skolem定理,并介绍了Alloy语言和Nusmv工具。 本书自出版以来受到广泛好评,已经被包括美国普林斯顿大学、卡内基-梅隆大学、英国大学、德国汉堡大学、加拿大多伦多大学、荷兰 Vrije大学,印度理工学院在内的多个国家几十所高校采纳为教
自上世纪20~30年其出现开始,群的上同调就成为了代数与拓扑学的交叉领域,并且促成了重要的新数学研究领域的创建,诸如同调代数和代数K-理论。该书是第一本综合论述有限群的上同调的书。书中介绍了最重要也是最有用的代数和拓扑方法,研究了有限群的上同调与同伦论、表示论和群作用之间的关系。书中的各理论与实例的结合,连同各种重要的经典群(对称群、交错群、李型极限群以及各种散在单群)的上同调的计算方法