本书全面介绍了算法的数学分析中所涉及的主要技术。涵盖的内容来自经典的数学课题(包括离散数学、初等实分析、组合数学),以及经典的计算机科学课题(包括算法和数据结构)。本书的重点是“平均情况”或“概率性”分析,书中也论述了“最差情况”或“复杂性”分析所需的基本数学工具。 本书 版为行业内的经典著作,本版不仅对书中图片和代码进行了更新,还补充了新章节。全书共 9 章, 章是导论 ;第 2~5 章介绍数学方法 ;第 6~9 章介绍组合结构及其在算法分析中的应用。除每章包含的大量习题以及参考文献外,本书特设配套免费学习网站,为读者提供了很多关于算法分析的补充材料,包括课件和相关网站的链接,帮助读者提高学习兴趣,完成更深入的学习。
《测度论(第1卷)(影印版)》是作者在莫斯科国立大学数学力学系的讲稿基础上编写而成的。卷包括了通常测度论教材中的内容:测度的构造与延拓,Lebesgue积分的定义及基本性质,Jordan分解,Radon-Nikodym定理,Fourier变换,卷积,L空间,测度空间,Newton-Leibniz公式,极大函数,Henstock-Kurzweil积分等每章最后都附有非常丰富的补充与习题,其中包含许多有用的知识,例如:Whitney分解,Lebesgue-Stieltjes积分,Hausdorff度,Brunn-Minkowski不等式,Hellinger积分与Hellinger距离,BMO类,Calderon-Zygmund分解等。书的最后有详尽的参考文献及历史注记。这是一本很好的研究生教材和教学参考书。
《数学分析在初等数学中的运用与例题选讲》共分极限、导数与微分、积分与级数四章.每一章的内容包括基本理论、方法及其在初等数学中如何使用的例子,用数学分析的基本理论解释中学教材中某些用初等数学知识无法讲透的内容.例如,推导中学数学公式,解释中学数学用表的制作原理等.《数学分析在初等数学中的运用与例题选讲》对基本理论的选取以在中小学数学中有比较直接的应用为原则,定理能证则证,不证的给予说明,相对自成体系.由于笔者的目标是引导数学师范生与中小学数学教师从数学分析的高度把握初等数学,所以例子成了本书的重要组成部分.全书选用例子120多个,绝大多数取自中小学数学教材与相关资料.分章来看,第一章对实数理论,第二章对函数凹凸性与不等式理论,第三章对中学数学公式的推导,第四章对中学数学用表的编制原理
今天不等式在数学领域发挥着显著的作用,而且已经形成了一个非常活跃、引人注目的研究领域。与之前的研究不等式的书相比,该书讲述了许多新的内容,即使在对最经典的不等式的讲述中,也添加了许多新研究。作者力求限度的详尽,而且给出了尽可能多的相关参考资料。目次:引言;普通不等式;特殊不等式;人名索引;主题索引。
《数学分析》是数学专业最基础课程, 它是学习后续课程的基础, 也是数学专业研究生入学考试的必考科目. 数学分析的内容丰富, 学生对内容的系统把握感觉困难. 为了读者复习数学分析的需要, 编著此书。本书包括极限论、一元函数微分学、一元函数积分学、级数理论、多元函数的极限与连续、多元函数微分学、含参变量积分、多元函数积分学
《拉克斯定理和阿廷定理--从一道IMO试题的解 法谈起》(作者戴执中、佩捷)是“数学中的小问题大 定理”之一,通过一道IMO试 题研究讨论拉克斯定理和阿廷定理,并着重介绍了希 尔伯特第 十七问题。 《拉克斯定理和阿廷定理--从一道IMO试题的解 法谈起》可供从事这一数学分支或相关学科的数学工 作者、大 学生以及数学爱好者研读。
本书主体内容是《数学分析》、《高等数学》有关内容和问题的自然延伸、补充、扩展和深化,具有拾遗补阙、加深提高之功效。各讲相对独立、自成体系,主要包括:实数理论;闭区间上连续函数性质的证明;求极限的几种新方法;不动点与压缩映射原理;单调函数;导函数的几个重要特性;中值定理的推广和有关问题;凸函数;积分学中的对称性;线面积分的几种计算方法;数项级数的敛散性判别法;函数项级数的一致收敛性;含参变量积分与广义积分;问题拾零等。本书题材多样、难度适中、深浅有度、深入浅出、易学易用,与《数学分析》、《高等数学》教材不即不离、若即若离。
《测度论(英文版)》综合性强,清晰易懂。全面介绍了测度和积分,重在强调学习分析和测度必需的和相关的一些话题。前五章讲述了抽象测度和积分,通过这五章,读者可以说精通积分知识;第六章讲述微分知识,包括Rd上变量的处理。《测度论(英文版)》的特点是初步并且全面的讲述局部紧Hausdorff空间上的积分知识、Polish空间上的解析和Borel子集和局部紧群上的Haar测度。书中提供了学习目前感兴趣的领域,尤其是调和分析和概率论的工具。每章末都附有具有代表性的习题,从常规题型到扩展训练都有,并且对较高难度的习题附有提示。
This book describes the contemporary state of the theory and some numerical aspects of inverse problems in partial differential equations. The topic is of substantial and growing interest for many scientists and engineers, and accordingly to graduate students in these areas.