本书第一部分主要介绍了广义函数论的基本内容,包括广义函数的定义、正则化、局部理论、乘子、卷积与张量积以及它的Fourier变换等经典内容;作为应用,考虑了常系数线性偏微分方程的基本解。第二部分主要介绍了经典函数空间的基本内容,包括Sobolev空间、H。lder空间、Lorentz空间在内的常见函数空间;Sobolev空间的延拓定理、嵌入定理与迹定理,以及Littlewood-Paley理论和Bony仿积分解。为了方便读者学习,我们在第三部分附录中补充了部分相关内容,并在各章节后配置了习题,使得本书基本上形成了一个自洽的体系。若作为授课教材,一个80学时的课程可以涵盖本书的主要内容,120学时则足以涵盖全部的内容。
本书主要介绍了三角函数的相关知识,并配有一定数量的习题供读者练习。本书共5章,分别介绍了三角恒等变换、三角函数的图象及性质、解斜三角形、三角不等式、三角法。 本书有如下特点:帮助学生夯实基础,通过知识精讲、典例剖析、归纳小结,落实基础知识;帮助学生培养逻辑推理能力,精选逻辑性强的综合题,启迪学生的思维,开阔学生的思路,落实数学思想方法的学习。引导学生关注数学应用、崇尚思维创新,从而走向成功。 本书适合对数学有浓厚兴趣的学生和对相关知识感兴趣的教师参考阅读。
《中外物理学精品书系·经典系列5:特殊函数概论》较系统地讲述一些主要的特殊函数,如Г函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等,同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等,在各章之末还附有习题,习题中包含了一些有用的公式作为《中外物理学精品书系·经典系列5:特殊函数概论》正文的补充. 《中外物理学精品书系·经典系列5:特殊函数概论》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用.
本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
本书以莫斯科学派的逻辑方法组织复变函数内容,从基础知识到理论延拓,共分十三章,分别为:复数、复变数与复变函数、线性变换与其他简单变换、柯西定理和柯西积分、解析函数项级数及解析函数的幂级数展开式、单值函数的孤立奇异点、留数理论、毕卡定理、无穷乘积与它对解析函数的应用、解析开拓、椭圆函数理论初步、保角映射理论的一般原则,以及单叶函数的一般性质。基础知识讲解细致、全面,很好地构建了复变函数基础框架,拓展理论清晰、广泛,为复变函数的进一步学习和物理应用埋下了伏笔。 本书可作为数学专业学生、教师的教学参考书,也可为物理、工程专业的学生及科研人员提供理论参考。
《泛函分析》介绍泛函分析的基础知识,包括距离空间与赋范空间、有界线性算子、Hilbert空间、有界线性算子的谱和拓扑线性空间。 《泛函分析》旨在提供一本教师易于使用、学生易于阅读的本科生教材。为此,《泛函分析》在内容编排上注重理论展开的条理性和清晰性,在文字叙述上力求可读性强,定理的证明过程较为详细。《泛函分析》的第5章不是本科生必须学习的内容,仅供读者需要时参考。《泛函分析》配备较多的习题,以备选用。《泛函分析》的末尾对大部分习题给出提示或解答要点,供读者参考。
当今科学家收集曲线样本及其他函数观测值,这本专著论述这类数据分析的思想和技巧,主要内容包括经典的线性回归方法、主成分分析、线性建模、典型相关分析及特殊的泛函技巧,如曲线注册和主微分分析。 本书始终利用来源于实际应用的数据,介绍方法的动机并举例论证,特别通过讨论数据生成过程的光滑性,说明如何通过泛函方法来发现数据的新特点;这些数据主要来源于增长分析、气象学、生物力学、马类科学、经济学及医学等领域的应用。本书论述新颖的统计技术,同时使其中的数学论证能被大多数人所理解。 本书许多内容都基于作者自己的工作,某些内容是首次出版。本书适合学生、应用数据分析学者及科研人员阅读,对统计学及其他广阔领域的研究也颇有价值。 本书作者Jim Ramsay是McGill大学的心理学教授,加拿大统计学会主席,多元分析等诸多
无
本书中附有“八大问题”供有兴趣的读者研究探讨。大学数学系的师生、中学数学教师和喜爱数学的高年级学生,均可读懂本书的绝大部分内容。本书是对“*值”、“曲线、曲面方程”、“解析法”等概念和方法进行深入发掘的结果,因此,对中学、大学的数学教学,有很高的参考价值。 本书通过建立多边形、组合图形和多面体的方程,实现对折边与组合图形进行解析研究的梦想。书中建立了很多的方程,给出了已知图形构建其*值方程和已知方程画出图形的一系列方法,并对方程给出了若干应用。
本书详细介绍了格罗斯问题的相关知识及内容,全书共分为15章,主要介绍了亚纯函数唯一性的格罗斯问题、具有公共原象的亚纯函数、亚纯函数的唯一性和格罗斯的一个问题、关于格罗斯的一个问题、亚纯函数的唯一性定理、涉及截断重数的亚纯映射的唯一性问题等内容,通过对本书的学习,读者可以充分理解并掌握格罗斯问题,并能够将其更好地应用到相关的理论研究中. 本书适合数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读.
本书系统地介绍了约束优化问题的非线性罚函数,即关于低次罚函数与目标罚函数理论与算法的研究成果,其中包括约束优化问题的低次罚函数**性条件和光滑化算法、单目标约束优化的目标罚函数理论与算法、多目标约束优化目标罚函数理论与算法、约束互补问题和双层约束优化问题的目标罚函数理论与算法,每个算法都给出了相应的算例结果。
本书根据作者多年在中山大学主讲实变函数论的讲稿整理而成,主要关于测度论和积分理论,内容有集合与基数、测度、可测函数、积分、L2空间等.每一章都附有较多例题,介绍实变函数解题的典型方法与重要技巧.书中的习题都有解答或者提示,方便学生学习.本书一个重要特点是结合测度论的发展历史,对相关的数学家及其工作也作了简短介绍.
本书第一部分主要介绍了广义函数论的基本内容,包括广义函数的定义、正则化、局部理论、乘子、卷积与张量积以及它的Fourier变换等经典内容;作为应用,考虑了常系数线性偏微分方程的基本解。第二部分主要介绍
控制科学与工程中的泛函分析基础 是信息类工程科学博士研究生的必修课.目前流行的教材或著作中,经典泛函分析理论内容占主导地位,近二十年控制科学与工程应用中的成果介绍不足.本书为弥补此不足而编写.本书在经典数学中对应地引入相应的控制科学与工程中的进展、例证及应用场景,力求反映控制科学与工程多个方向中泛函分析的理论应用.本书主要内容包括赋范线性空间基础、Hilbert空间与线性泛函理论、对偶空间理论以及线性算子理论.
The implicit function theorem is. along with its close cousinthe inverse func- tion theorem, one of the most important, and oneof the oldest, paradigms in modcrn mathemarics. One can see thegerm of the idea for the implicir func tion theorem in the writingsof Isaac Newton (1642-1727), and Gottfried Leib-niz's (1646-1716)work cxplicitty contains an instance of implicitdifferentiation. Whilc Joseph Louis Lagrange (1736-1813) found a theorcm that isessentially a version of the inverse function theorem, ic wasAugustin-Louis Cauchy (1789-1857) who approached the implicitfunction theorem with mathematical rigor and it is he who isgencrally acknowledgcd as the discovcrer of the theorem. InChap-ter 2, we will give details of the contributions of Newton,Lagrange, and Cauchy to the development of the implicit functiontheorem.
本书是在云南财经大学多次使用的微分方程讲义的基础上整理而成的。本书内容包括微分方程模型,常微分方程的基本概念,初等积分法,一阶常微分方程组,高阶线性常微分方程,偏微分方程的概念,线性偏微分方程的Adomian分解法,特征线法、达朗贝尔公式和分离变量法,布莱克-斯科尔斯方程,非线性偏微分方程的Adomian分解法,变分迭代法简介等。