《特殊函数概论》是著名学者王竹溪先生的著作,书中系统地讲述了一些主要的特殊函数,如超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数。原著书中有360多道习题,习题数目巨大,且难度很高,如果单由读者去自行解答,会给读者带来很大的困难和困惑。吴崇试教授根据书中内容,总结书中习题的解法,系统的编写了这一本一本配套《特殊函数概论》的习题解答书,书中不仅全面解答了原著中的所有习题,还对原著中存在的很多错误进行了纠正。
《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
本书主要介绍了三角函数的相关知识,并配有一定数量的习题供读者练习。本书共5章,分别介绍了三角恒等变换、三角函数的图象及性质、解斜三角形、三角不等式、三角法。 本书有如下特点:帮助学生夯实基础,通过知识精讲、典例剖析、归纳小结,落实基础知识;帮助学生培养逻辑推理能力,精选逻辑性强的综合题,启迪学生的思维,开阔学生的思路,落实数学思想方法的学习。引导学生关注数学应用、崇尚思维创新,从而走向成功。 本书适合对数学有浓厚兴趣的学生和对相关知识感兴趣的教师参考阅读。
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、*模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、 函数和b函数、椭圆函数、cauchy型积分。上列*后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。 《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
本书共分9章,内容包括复数与复变函数、解析函数、复变函数的积分、复级数、留数、保形映射、傅里叶变换、拉普拉斯变换、Z变换。每章后边配有相关练习题。书末配有2个附录,分别是傅氏变换简表和拉氏变换简表。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相
《泛函分析》介绍泛函分析的基础知识,包括距离空间与赋范空间、有界线性算子、Hilbert空间、有界线性算子的谱和拓扑线性空间。 《泛函分析》旨在提供一本教师易于使用、学生易于阅读的本科生教材。为此,《泛函分析》在内容编排上注重理论展开的条理性和清晰性,在文字叙述上力求可读性强,定理的证明过程较为详细。《泛函分析》的第5章不是本科生必须学习的内容,仅供读者需要时参考。《泛函分析》配备较多的习题,以备选用。《泛函分析》的末尾对大部分习题给出提示或解答要点,供读者参考。
无
本书是关于广义函数的本专著。全书共分九章。书中系统总结、高度概括了作者L.施瓦兹当年得以获得“菲尔兹奖”的主要工作。讨论了广义函数的各种基本性质、运算与变换,特别是阐明了著名的Dirac函数其实是一个测度而不是一个函数。从而为Dirac测度在量子力学以及其他学科中的广泛应用打下了坚实的数学基础。 本书包含了当时与广义函数论有关的许多重要的理论和原始思想。在其法文版首次出版后半个多世纪的今天仍有理论价值和参考价值,尤其适合于数学系高年级本科生或研究生研读。
本书中附有“八大问题”供有兴趣的读者研究探讨。大学数学系的师生、中学数学教师和喜爱数学的高年级学生,均可读懂本书的绝大部分内容。本书是对“*值”、“曲线、曲面方程”、“解析法”等概念和方法进行深入发掘的结果,因此,对中学、大学的数学教学,有很高的参考价值。 本书通过建立多边形、组合图形和多面体的方程,实现对折边与组合图形进行解析研究的梦想。书中建立了很多的方程,给出了已知图形构建其*值方程和已知方程画出图形的一系列方法,并对方程给出了若干应用。
本书详细介绍了格罗斯问题的相关知识及内容,全书共分为15章,主要介绍了亚纯函数唯一性的格罗斯问题、具有公共原象的亚纯函数、亚纯函数的唯一性和格罗斯的一个问题、关于格罗斯的一个问题、亚纯函数的唯一性定理、涉及截断重数的亚纯映射的唯一性问题等内容,通过对本书的学习,读者可以充分理解并掌握格罗斯问题,并能够将其更好地应用到相关的理论研究中. 本书适合数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读.
The implicit function theorem is. along with its close cousinthe inverse func- tion theorem, one of the most important, and oneof the oldest, paradigms in modcrn mathemarics. One can see thegerm of the idea for the implicir func tion theorem in the writingsof Isaac Newton (1642-1727), and Gottfried Leib-niz's (1646-1716)work cxplicitty contains an instance of implicitdifferentiation. Whilc Joseph Louis Lagrange (1736-1813) found a theorcm that isessentially a version of the inverse function theorem, ic wasAugustin-Louis Cauchy (1789-1857) who approached the implicitfunction theorem with mathematical rigor and it is he who isgencrally acknowledgcd as the discovcrer of the theorem. InChap-ter 2, we will give details of the contributions of Newton,Lagrange, and Cauchy to the development of the implicit functiontheorem.
传统的分布式应用不会切入微服务、快速数据及传感器网络的响应式世界。为了捕获这些应用的动态联系及依赖,我们需要使用另外一种方式来进行领域建模。由纯函数构成的领域模型是以一种更加自然的方式来反映一个响应式系统内的处理流程,同时它也直接映射到了相应的技术和模式,比如Akka、CQRS 以及事件溯源。本书讲述了响应式系统中建立领域模型所需要的通用且可重用的技巧——首先介绍了函数式编程和响应式架构的相关概念,然后逐步地在领域建模中引入这些新的方法,同时本书提供了大量的案例,当在项目中应用这些概念时,可作为参考。
泛函分析是分析数学中最“年轻”的分支,在各个领域均有着广泛应用。本书是泛函分析的经典教材。作为Rudin的分析学经典著作之一,本书秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理、Lamonosov不变子空间定理以及遍历定理等。另外,还适当增加了一些例子和习题。
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。