《小升初数学推理思维教程》是一本以8-13岁学生,尤其是面临小升初的学生为读者对象的儿童读物。本书由具有多年一线数学教学经验的教师编写。本书不以考试升学为学习目标,旨在培养学生观察、比较、分析、演绎和归纳等基本能力,掌握科学的推理方法,促进已有知识、经验、技能的有效迁移,提高学习效率。全书共分为三部分,章是归纳推理,包括图形推理和数列推理;第二章是演绎推理,包括立体图形展开图,立体图形的拼插旋转以及速算推理;第三章是类比推理。本书可以作为孩子的课外读物,可以拓展思维,提高图形思维推理能力,进而提升数学成绩。
.
莫里斯·克莱因的这部博大精深的不朽著作,向人们展示了数学从巴比伦和埃及起源时至20世纪最初几个年代的主要创造。围绕着数学思想的主要概念以及为其做出贡献的人物组织起来的这本巨著,给人们提供了数学发展的一个概观,揭示了隐藏在今天这个学科互不相连的各个分支后面的统一性。《古今数学思想(英文版 册)》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。全书的特色是:尽管这洋洋百万言含有大量资料的旁征博引,却又能做到组织有机、脉络清晰、主题突出,充分体现了作者深厚的功力。 《古今数学思想(英文版 册)》对于广大理工科师生、科学史研究者和数学爱好者,都是不可多得的精神食粮。
考点全讲,巧记速查,以学带练,全面备考。 全讲:必背加必懂,体系全、讲解全。 精炼:必做小考题,选题精、考查精。
全书详细介绍数学联赛中解析几何的题型和解题方法.解析几何的基本内容包括:直线和圆、圆锥曲线、参数方程和极坐标、轨迹问题、圆锥曲线的切线和极线问题;基本题型包括:圆锥曲线性质的研究、圆锥曲线的zui值问题;解题技巧包括:平面几何性质的使用、圆锥曲线有关直径性质的使用、点差法的使用、两条直线合成技巧的使用、曲线系方程的使用.本书还对解析几何中一般圆锥曲线的性质进行了深入研究,这些可以用于命题研究和试题研究.作为本书的新亮点,第10章对平面几何竞赛试题的解析法证明进行了充分的展示.本书内容丰富,方法多样,习题充足,可作为参加全国高中数学联赛的中学生复习解析几何的shouxuan用书,也可作为广大数学奥林匹克教练员进行高中数学联赛考前辅导的教材,或高等院校数学系本科生和研究生选修数学竞赛的参考书.