本书围绕精益创业展开讨论,融合了精益创业法、客户开发、商业模式画布和敏捷/持续集成的精华。本书汇聚了100多位创始人、投资人、内部创业者和创新者的成功创业经验,呈现了 30 多个极具价值的案例分析,可以为各阶段的创业者提供行为准则。 如果你是一名创业者,或者你是一名产品开发、产品管理、市场营销、公共关系和投资领域的商务专业人员,那么本书不容错过。
这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第壹部分(第1~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式
《谁说菜鸟不会数据分析》(入门篇)是一本有趣的数据分析书!本书基于通用的Excel工具,加上必知必会的数据分析概念,以小说般通俗易懂的方式讲解。本书基于职场三人行来构建内容,完全按照数据分析工作的完整流程来讲解。全书共8章,依次讲解数据分析必知必会知识、数据分析的结构化思维、数据处理技巧、数据展现的技术、提升图表之美的专业化视角,以及专业分析报告的撰写方法等内容。本书有足够的魅力让你一口气读下去,在无形之中掌握数据分析的技能,提升职场竞争能力。本书能有效帮助职场新人提升职场竞争力,也能帮助市场营销、金融、财务、人力资源管理人员及产品经理解决实际问题,还能帮助从事咨询、研究、分析行业的人士及各级管理人士提高专业水平。
本书由一线数据分析师精心编写,通过大量案例介绍了数据分析工作中常用的数据分析方法与工具。本书包括5章内容,分别是数据分析入门、数据分析 从玩转Excel开始、海量数据管理 拿MySQL说事儿、数据可视化 Tableau的使用、数据分析进阶 Python数据分析。本书通俗易懂、通过大量贴近企业真实场景的案例,帮助读者在提高数据处理技能的同时加深对数据分析思维的理解。 本书适合有志于从事数据分析工作或已从事初级数据分析工作的人士自学,也可作为产品经理、运营人员、市场人员、对数据分析感兴趣的企业高管以及创业者的参考用书。
《问卷数据分析:破解SPSS软件的六类分析思路(第2版)》系统介绍了使用SPSS软件进行问卷数据分析的思路及方法,分为四部分,分别是问卷设计、六类问卷分析思路、数据分析方法在SPSS软件中的操作和答疑解惑。其中问卷设计部分适用于所有读者,建议读者在设计问卷前详细阅读这部分内容。读者可以结合实际情况选读六类问卷分析思路部分的内容。数据分析方法在SPSS软件中的操作部分详细讲解了各类数据分析方法在SPSS软件中的操作细节,并且对输出结果进行说明。答疑解惑部分罗列了使用各类分析方法时常见的疑难杂症,并且提供了解决方法。本书侧重于问卷分析的应用性,力求让读者在*短的时间内掌握使用SPSS软件分析问卷数据的方法并完成高质量的问卷数据分析报告。 使用SPSS软件分析调查问卷数据常见于各类学术研究、论文写作、企业市场调研和各类
随着TheDataWarehouseToolkit(1996)第1版的出版发行,RalphKimball为整个行业引入了维度建模技术。从此,维度建模成为一种被广泛接受的表达数据仓库和商业智能(DW/BI)系统中数据的方法。该经典书籍被认为是维度建模技术、模式和实践的资源。 该书汇集了到目前为止全面的维度建模技术。 该书采用新的思路和实践对上一版本进行了全面修订,给出了设计维度模型的全面指南,既适合数据仓库新手,也适合经验丰富的专业人员。 该书涉及的所有技术都基于作者实际从事DW/BI的设计经验,通过实际案例加以描述。 该书主要内容: 实用设计技术 有关维度和事实表的基本和高级技术。 14个案例研究,涉及零售业、电子商务、客户关系管理、采购、库存、订单管理、会计、人力资源、金融服务、医疗卫生、保险、教育、电信和运输等。
本书结合理论和实践,由浅入深,全方位介绍了Hadoop这一高性能的海量数据处理和分析平台。全书5部分24章,第Ⅰ部分介绍Hadoop基础知识,主题涉及Hadoop、MapReduce、Hadoop分布式文件系统、YARN、Hadoop的I/O操作。第Ⅱ部分介绍MapReduce,主题包括MapReduce应用开发;MapReduce的工作机制、MapReduce的类型与格式、MapReduce的特性。第Ⅲ部分介绍Hadoop的运维,主题涉及构建Hadoop集群、管理Hadoop。第Ⅳ部分介绍Hadoop相关开源项目,主题涉及Avro、Parquet、Flume、Sqoop、Pig、Hive、Crunch、Spark、HBase、ZooKeeper。第Ⅴ部分提供了三个案例,分别来自医疗卫生信息技术服务商塞纳(Cerner)、微软的人工智能项目ADAM(一种大规模分布式深度学习框架)和开源项目Cascading(一个新的针对MapReduce的数据处理API)。 本书是一本权威、全面的Hadoop参考书和工具书,阐述了Hadoop生态圈的*发展和应用,程序员可以从中探
作为一本 Power Query 初级入门读本,《Power Query 智能化数据汇总与分析》不深入介绍 M 函数,而是结合大量的实际案例,利用 Power Query 可视化的操作向导,来解决实际工作中烦琐的数据整理、汇总和分析问题,让读者在短时间内,能够对 Power Query 有一个较为全面的了解和掌握,并能迅速提升数据处理和统计分析效率。 《Power Query 智能化数据汇总与分析》适合具有 Excel 基础知识并经常处理大量数据的各类人员阅读,也可作为大专院校经济类本科生、研究生和 MBA 学员的教材或参考书。
《Doris实时数据仓库理论与实战》系统地介绍了Doris的核心概念、架构原理和各项功能。全书共7章。第1章对Doris做了初步介绍。第2章重点介绍了Doris的数据表设计。第3章聚焦于Doris的数据导入。第4章介绍了Doris的数据导出和数据管理。第5章讨论了Doris中的数据更新和删除操作。第6章将读者带入Doris的进阶使用领域。第7章展示了Doris的生态扩展。通过《Doris实时数据仓库理论与实战》的学习,读者可以全面而深入地了解运用Doris构建高效、可扩展、实时数据仓库系统的方法,从理论到实践,从基础到进阶。 《Doris实时数据仓库理论与实战》适用于Doris开发人员和数据工程师,或有志从事数据仓库开发的技术人员。
大数据时代,对数据进行统计、分析和学习变得尤为重要,并被应用在各方各面,如无人驾驶汽车、AlphaGo、机器学习和人工智能等,而统计思维也成为大数据时代的基本思维。不仅这些高科技以统计学为基础理论,大数据时代的每个人都应该懂点统计学,学会读懂并分析数据,学会让数据说话,让数据为自己服务。《大数据时代的统计学思维:让你从众多数据中找到真相》就是大数据时代统计学思维的科普书籍,全书共10章,第1章用几个有趣好玩的例子引导读者进入统计学的世界,并调动读者学习统计学的兴趣。第2~10章结合生活和工作中的例子全面介绍统计学原理和方法,涵盖统计学中的数据收集、数据处理和统计推断等内容,既有抽样调查、概率、相关性分析、回归分析等实用统计方法,也有大数定律和中心极限定理等基本统计学原理。用实例引导理论,通俗
本书是为广大数据分析师量身定制的入门读物,它旨在帮助读者站在大数据时代的制高点。数据分析处于统计学、计算机信息科学、运筹学、数据库等多个领域的交叉地带,大数据时代的到来大大丰富了数据分析的内涵,数据分析师的职责与以往相比发生了巨大的改变。本书全面介绍了经典数据分析、模式识别、机器学习、深度学习、数据挖掘、商务智能等多个领域的数据分析算法,将大数据时代的数据分析热点技术一网打尽。本书为每个数据分析算法都搭配了一个经典案例,并按照由易到难的原则构建知识框架,充分照顾了不同水平读者的阅读习惯。通过阅读本书,读者将对大数据时代下的数据分析有一个全面的认识。无论是入门级的数据分析员还是有一定基础的数据分析师,都能通过本书完善、加深对数据分析的认识。
AI时代,ChatGPT作为一款基于人工智能技术的聊天机器人,具有极广泛的应用场景。《ChatGPT Excel高效数据计算与处理:视频教学版》旨在带领读者学习如何使用ChatGPT来简化Excel的数据处理、分析及计算工作。 《ChatGPT Excel高效数据计算与处理:视频教学版》共分 6章,内容包括对 ChatGPT的基本了解、掌握在 Excel中高效提问的技巧、使用 ChatGPT辅助数据的整理和优化、了解ChatGPT给予Excel函数的帮助、借助ChatGPT辅助生成Excel函数公式以及通过 ChatGPT生成VBA代码实现自动化处理。 《ChatGPT Excel高效数据计算与处理:视频教学版》适用于经常使用Excel进行数据处理与分析的职场办公人士。同时,对于职场新人,如果您对Excel的使用不够熟练,或者对数据分析及函数应用知识了解有限,《ChatGPT Excel高效数据计算与处理:视频教学版》将为您提供极大的帮助。
数据、模型与决策是应用数学建模和计算机技术帮助决策者解决问题。作为国外一本优秀的数据、模型与决策的教材,本书具有以下特色: 1.对枯燥、复杂和技术化的数学问题用简明易懂的语言予以解释,兼顾严谨的数理逻辑。 2.突出建模分析框架和基础逻辑的讲授和训练,在某种程度上实现了艺术与科学的有机融合。 3.课后习题丰富,并配有网络题库,供自学者加强训练,及时检查对理论模型及其求解方法的掌握程度。 第12版把修订重点放在企业和组织的*技术发展上,增加了商业分析(第1章)、项目风险(第8章)以及数据挖掘(第14章)等内容。
nbsp nbsp《Power BI 商业数据分析完全自学教程》是一本系统地讲解利用 Power BI 软件进行商业数据智能分析的自学宝典。《Power BI商业数据分析完全自学教程》以 完全精通 Power BI 为出发点,以 用好 Power BI 为目标来安排内容,全书共 5 篇,分为 14 章,循序渐进地介绍了 Power BI 的基本操作、数据导入、数据整理、数据建模、数据可视化分析、数据发布等相关技能。 第 1 篇为基础入门篇(第 1 章 ~ 第 3 章),主要针对初学者,从零开始,系统且全面地讲解了 Power BI 的入门知识点、基本操作及数据的输入和连接操作。 第 2 篇为数据处理篇(第 4 章 ~ 第 6 章),介绍了 Power BI 数据的整理操作、表格中行 / 列数据的管理,以及 Power BI 数据的高级处理、M 函数的使用等。 第 3 篇为数据分析篇(第 7 章 ~ 第 9 章),介绍了 Power BI 数据的建模操作及 DAX 语言的入门和进阶操作等。
这是一部从技术、流程、管理等多个维度系统讲解华为数据治理和数字化转型的著作。华为是一家超大型企业,华为的数据底座和数据治理方法支撑着华为在全球170多个国家/地区开展多业态、差异化的运营。书中凝聚了大量数据治理和数字化转型方面的有价值的经验、方法论、规范、模型、解决方案和案例,不仅能让读者即学即用,还能让读者了解华为数字化建设的历程。 全书共10章,内容从逻辑上分为四个部分。 第一部分(第1~3章) 第1章以非数字原生企业在数字化转型方面面临的挑战开篇,介绍了华为在数据治理和数字化转型方面的目标、愿景、蓝图和框架;第2章从企业政策和架构协同的角度,介绍了企业级的数据综合治理体系,理顺了数据与变革、运营、IT之间的协同关系,明确了数据管理的责任主体在业务;第3章详细阐述了不同类型的数据的管理方式和
本书按照需求规划、需求实现、需求可视化的流程进行编排,遵循项目开发的实际流程,全面介绍了数据仓库的搭建过程。在整个数据仓库的搭建过程中,本书介绍了主要组件的安装部署过程、需求实现的具体思路、部分问题的解决方案等,并在其中穿插了许多与大数据和数据仓库相关的理论知识,包括大数据概论、数据仓库概论、电商业务概述、数据仓库理论准备、数据仓库建模等。 本书从逻辑上可以分为三部分:一是大数据与数据仓库概论及项目需求描述,主要介绍了数据仓库的概念、应用场景和搭建需求;二是项目部署的环境准备,介绍了如何从零开始搭建一个完整的数据仓库环境;三是需求模块实现,针对不同需求分模块进行实现,是本书的重点部分。 本书适合具有一定的编程基础并对大数据感兴趣的读者阅读。通过阅读本书,读者可以快速了解数据
《Excel VBA SQL数据管理与应用模板开发》结合大量实际案例,介绍了如何利用Excel VBA和数据库查询技术ADO SQL快速进行数据查询、汇总,并开发个性化模板。本书共分8章,提供了大量的VBA实际案例和实用代码。在实际工作中,可以直接照搬套用这些代码,或者结合自己的实际情况稍微修改加工即可使用。 另外,《Excel VBA SQL数据管理与应用模板开发》重点介绍了一个比较完整的合同系统模板,包括供货商信息管理、合同信息管理、发票管理、付款管理、统计分析等。《Excel VBA SQL数据管理与应用模板开发》可供企事业单位数据管理和数据分析人员参考,也可供大专院校相关专业的学生参考。
数据链是按照规定的消息格式和通信协议,利用调制解调、编解码、抗干扰、组网通信和信息融合等多种技术,以面向比特的方式实时传输格式化数字信息的地 空、空 空、地 地战术无线数据通信系统。本书首先论述数据链的基本理论和关键技术;然后分析典型航空数据链系统 Link-4A、Link-11、Link-16和Link-22及其作战应用;*后介绍演进中的协同与制导数据链 机间数据链、武器数据链、TTNT和CEC,数据链的网络化发展 航空网络,以及代表性技术 移动自组织网和LPI通信技术等。
本书围绕数据挖掘竞赛,讲解了各种类型数据挖掘竞赛的解题思路、方法和技巧,并辅以对应的实战案例。全书共11章。第1章介绍数据挖掘竞赛的背景、意义和现状。从第2章开始,介绍了各种不同类型的数据挖掘竞赛包括结构化数据、自然语言处理、计算机视觉(图像)、计算机视觉(视频)、强化学习。每种类型的数据挖掘竞赛包含理论篇和实战篇:理论篇介绍通用的解题流程和关键技术;实战篇选取比较有代表性的赛题,对赛题的优秀方案进行深入分析,并提供方案对应的实现代码。 本书适合数据挖掘竞赛爱好者、人工智能相关专业在校大学生、人工智能方向从业人员及对人工智能感兴趣的读者阅读。
《商业智能工具应用及数据可视化》一书聚焦商业智能与数据可视化主题,从概念、价值、方法、工具等理论基础出发,以实际场景为参考,分入门、进阶两大阶段,以帆软FineBI为例从商业智能工具的基本知识,商业应用场景,数据可视化优秀案例等方面,介绍了商业智能工具和各种常规和高级可视化图形的使用方法,重点介绍了商业智能工具FineBI的数据分析与可视化应用实践。本书内容层层递进,体系完善,可使读者对商业智能工具的运用有一个全面、系统、深入的了解。
《Python大数据分析与挖掘》是一本以大数据获取与分析为核心的教材,共分为4篇11章,循序渐进地引导读者深入学习Python在大数据领域的应用。第1篇为Python基础,全面介绍Python语言的基本特点和编程基础。第2篇为Python数据分析基础,主要内容包括NumPy、Pandas和Matplotlib数据分析工具包的使用,为数据分析与可视化奠定基础。第3篇为数据采集,介绍网络爬虫方法,包括静态网页和动态网页的爬取技术,使读者能够灵活获取网络数据。第篇为大数据分析实践,涵盖了数据探索性分析、机器学习以及自然语言处理等内容,并提供了丰富的实践案例。
《Python数据分析与大数据处理从入门到精通》主要讲解数据分析与大数据处理所需的技术、基础设施、核心概念、实施流程。从编程语言准备、数据采集与清洗、数据分析与可视化,到大型数据的分布式存储与分布式计算,贯穿了整个大数据项目开发流程。本书轻理论、重实践,目的是让读者快速上手。1篇首先介绍了Python的基本语法、面向对象开发、模块化设计等,掌握Python的编程方式。然后介绍了多线程、多进程及其相互间的通信,让读者对分布式程序有个基本的认识。第2篇介绍了网络数据采集、数据清洗、数据存储等技术。第3篇介绍了Python常用的数据分析工具,扩展了更多的数据清洗、插值方法,为*终的数据可视化奠定基础。第4篇是大数据分析的重点。首先介绍了Hadoop的框架原理、调度原理,MapReduce原理与编程模型、环境搭建,接着介绍了Spark框架原
《金融大数据》阐述了大数据技术在国内外金融领域的发展和应用现状,从大数据视角加以思考和探索,为金融创新、金融大数据研究和应用提供有益支持。本书的特色在于注重大数据技术与金融业务的结合,通过充分调研,并与多家业内有影响力的金融机构及数据公司合作研究,掌握了大量手资料。《金融大数据》内容着力于金融学与计算机科学的学科交叉,填补相关领域的资料空白。 《金融大数据》共15章。第1、2章介绍金融大数据的应用现状、资源和技术等。第3至14章是本书重点,分别介绍了大数据技术在证券期货、银行、保险和互联网金融中的应用。第3至5章为证券期货应用,典型应用包括自动化交易策略设计、金融期货风险监管、证券期货舆情分析等。第6至8章为银行业应用,典型应用包括银行客户关系管理、银行风险管理、小微企业信贷等。第9至11章