本书是国际数据管理协会(DAMA国际)组织众多国际专家对过去30多年数据管理领域知识和实践的总结,是市场上综合了数据管理方方面面的一部具有性的基础工具书。从数据治理、数据架构、数据质量、数据安全、主数据管理、参考数据管理、元数据管理、商务智能和数据参考管理、数据建模设计、数据存储和操作、数据集成和互操作、文档和内容管理、大数据、数据管理人员的道德要求等方面介绍了数据管理的知识体系。
《数据库内核揭秘:存储引擎的设计与实现》深入探讨数据库存储引擎内部机制,详细阐述存储引擎在数据管理中的核心作用,包括数据的存储、检索和管理方式。 《数据库内核揭秘:存储引擎的设计与实现》共分为9章,内容从基础概念到高级技术,逐步深入,旨在为读者提供全面的理解框架。前两章为读者打下坚实的基础,介绍数据库系统的概览以及操作系统和硬件设备的相关知识。接下来的章节按照自底向上的逻辑顺序,深入探讨存储引擎的关键模块。第3章讲解数据在文件系统中的组织和存储方式。第4章聚焦于缓冲池的设计和缓存替换算法。作为存储引擎的核心,索引在本书占据了3章的篇幅(第5~7章),详细介绍哈希表、LSM树和B树家族。第8章讨论数据库系统中的故障恢复问题,重点介绍了ARIES算法及其应用。第9章关注事务的并发控制,包括多种并发控制算法
《数字化生存》描绘了数字科技为我们的生活、工作、教育和娱乐带来的各种冲击和其中值得深思的问题,是跨入数字化新世界的*指南。英文版曾高居《纽约时报》畅销书排行榜。 信息的DNA 正在迅速取代原子而成为人类生活中的基本交换物。尼葛洛庞帝向我们展示出这一变化的巨大影响。电视机与计算机屏幕的差别变得只是大小不同而已。从前所说的 大众 传媒正演变成个人化的双向交流。信息不再被 推给 消费者,相反,人们或他们的数字勤务员将把他们所需要的信息 拿过来 并参与到创造它们的活动中。信息技术的革命将把受制于键盘和显示器的计算机解放出来,使之成为我们能够与之交谈,与之一道旅行,能够抚摸甚至能够穿戴的对象。这些发展将变革我们的学习方式、工作方式、娱乐方式 一句话,我们的生活方式。犀利的见解使尼葛洛庞帝成为《连线》
内容简介 这是一本能为数字化转型企业的数据治理提供全面指导的著作。拥有集团官方出品,得到了用友集团董事长王文京、DAMA中国区主席汪广盛等9位企业界和学术界数字化专家的一致好评 它基于国际主流的数据治理框架和用友多年的数据治理经验,从道、法、术、器4个维度全面、深入展开,不仅有数据治理在战略层面的顶层设计,还有数据治理在执行层面的实施方法,既可以作为数据治理的纲领性指南,又可作为数据治理的实操手册。 从数据治理的战略规划到落地实施,本书将各环节的核心内容凝练为 3 个战略机制、8 项关键举措、7 种技术能力、7 个治理工具 : 数据治理之道:3个战略机制 高屋建瓴地介绍了数据治理的数据战略、组织机制和数据文化。这3个机制能够帮助企业形成数据治理的自我驱动、自我进化、可持续发展和长效运营机制。 数据治理之
《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。本书基于该书第7版进行改编,保留其中的基本内容,压缩或删除了一些高级内容,更加适合作为国内高校计算机及相关专业本科生数据库课程教材。
《数据分析实践:专业知识和职场技巧》从初学者的角度出发,讲解了进阶为高级数据分析师所需的知识和技能,其中既包括数据分析岗位的介绍、发展现状及未来趋势,也包括实际工作中各环节的方法策略、实战案例,还包括职场中的困惑解答及面试指导。阅读本书,并基于本书进一步拓展所需要的知识能,可以帮助读者形成一套成系统、可实战的数据分析方法论。
在数字中国这一国家战略的牵引下,数据要素和数字化转型的研究和落地如火如荼。数据中台是企业开展数据要素相关实践和数字化转型的关键基础设施,本书在这样的时代背景下,以帮助企业 管好数据、用好数据 为宗旨,内容围绕数据中台架构与建设方法论、数据中台建设流程和内容、数据中台工程化交付、数据中台行业解决方案4个维度全面、深度展开。 本书一共17章,逻辑上分为四个部分: 第1部分 数据中台建设方法与架构设计(第1~3章) 首先,从产生、定义、认知、相关概念、建设方法论、架构等方面对数据中台进行了全面介绍,帮助读者建立对数据中台的清晰认识和理解,熟悉数据中台的建设机制;然后,总结了企业数据应用成熟度评估、数据中台在各个行业的应用场景,以及数据中台的成功要素。 第2部分 数据中台建设内容与运营方法(第4~10章)
大模型在众多领域得到了广泛应用,促进了AI技术的整合和创新。然而,在实际应用过程中,直接将大模型应用于特定行业常常难以达到预期效果。本书详细阐述如何在游戏经营分析场景中利用大模型实现数据体系的建设。 本书分为6个部分,共16章。第1部分主要介绍大模型技术的发展与应用,从大模型的发展现状展开,重点介绍大模型与数据体系的相关知识。第2部分主要介绍大模型下的关键基础设施,涵盖湖仓一体引擎、湖仓的关键技术、实时数据写入和高效数据分析等内容。第3部分主要介绍大模型下的数据资产,围绕数据资产重塑、数据资产标准、数据资产建设、数据资产运营展开。第4部分主要介绍自研领域大模型的技术原理,涵盖领域大模型的基础、需求理解算法、需求匹配算法、需求转译算法等内容。第5部分主要介绍大模型的工程化原理,涉及工程化的
本书从ChatGPT的基础原理讲起,逐步深入ChatGPT的基础使用和插件功能,并结合各种数据分析实战案例,重点介绍了ChatGPT在各种数据分析场景中的应用方法,让读者不但可以系统地学习ChatGPT相关知识,而且能对ChatGPT在数据分析中的实战应用有更为深入的理解。本书分为12章,涵盖的主要内容有:ChatGPT简介与基本原理;ChatGPT使用方法;ChatGPT插件应用;ChatGPT构建指标体系、ChatGPT 数据采集与清洗、ChatGPT探索性数据分析和可视化、ChatGPT推断性统计分析、ChatGPT预测分析、ChatGPT文本分析、ChatGPT分类和聚类分析、ChatGPT推荐算法、ChatGPT行业数据分析等的应用方法和实战项目案例。 本书内容通俗易懂、案例丰富、实用性强,特别适合对数据分析和人工智能感兴趣的读者,包括但不限于数据分析师、数据科学家、数据工程师、有数据分析需求的业务人员、研究人员、学生
统计学是在概率论基础上发展起来的一门应用数学的学问。在自然科学、工程学、社会学、人文学、军事学等诸多应用领域,凡是涉及数据的收集、处理、分析、可视化和解释等方面的问题,都是统计学大显身手的舞台。 统计学既是应用数学的一个分支,又是一门推断的艺术,其中不乏有哲学思辩和信念差异。来自不同学派的观点相互碰撞,使得统计学在二十世纪飞速发展。今天,借助计算机的帮助,人们可以从各个角度探索数据的本质。然而,我们仍需时刻提醒自己,在算力之上,精巧的算法永远重要。 本书延续了《随机之美》的写作风格,以二十世纪最伟大的两位统计学家罗纳德 艾尔默 费舍尔和耶泽 内曼为故事的主角,介绍了现代统计学的一些主要成果。这两位统计学大师同属频率派,均为贝叶斯主义的反对者,然而二人之间也有过很多饶有趣味的学术
本书是一部异构制造大数据智能融合技术的学术专著。本书以制造业大数据为背景,围绕旋转设备的运行状态展开,系统介绍了在多源异构制造大数据的基础上利用多源数据融合的方法实现旋转设备的运行状态监测和智能诊断。 本书的最大亮点和特色是遵循理论性与实践性相结合、先进性与实用性相结合、专业性与通用性相结合的原则。 本书适合以下读者: 对人工智能、机器学习、数据融合感兴趣的读者;希望用计算机的算法解决机械相关领域问题的研究者、工程设计人员和应用人员。本书可以作为计算机专业和机械专业的本科毕业设计和研究生学术论文的参考资料,尤其是可供研究多源数据融合和机械设备故障诊断方向的学生、研究人员参考;还可以作为相关工程技术人员的辅助参考。
《Hadoop海量数据处理》从Hadoop的基础知识讲起,逐步深入Hadoop分布式文件系统(HDFS)和MapReduce分布式编程框架的核心技术,帮助读者全面、系统、深入地理解Hadoop海量数据处理技术的精髓。本书在讲解技术原理时穿插大量的典型示例,并详解两个典型项目实战案例,帮助读者提高实际项目开发水平。 《Hadoop海量数据处理》共15章,分为4篇。第1篇Hadoop基础知识,包括大数据概述、Hadoop概述、Hadoop环境搭建与配置;第2篇Hadoop分布式存储技术,包括HDFS概述、HDFS基础操作、HDFS的读写原理和工作机制、Hadoop 3.x的新特性;第3篇MapReduce分布式编程框架,包括MapReduce概述、MapReduce开发基础、MapReduce框架的原理、MapReduce数据压缩、YARN资源调度器、Hadoop企业级优化;第4篇项目实战,包括Hadoop高可用集群搭建实战和统计TopN经典项目案例实战。 《Hadoop海量数据处理》通俗易懂、案
当应用于大型分布式数据集时,标准算法和数据结构可能会变慢或完全失效。选择专为大数据设计的算法可以节省时间、提高准确性并降低处理成本。《漫画算法与数据结构(大规模数据集)》将最前沿的研究论文提炼为实用的技术,用于绘制、流式传输并组织磁盘和云中的大规模数据集,十分独特。 大规模数据集的算法与数据结构为大型分布式数据引入了处理和分析技术。《漫画算法与数据结构(大规模数据集)》作为指南,包含了行业故事和有趣的插图,使复杂的概念也易于理解。在学习如何将强大的算法(如Bloom 过滤器、计数最小草图、HyperLogLog和LSM树)映射到你自己的用例时,将对真实世界的示例进行探索。 主要内容: ● 概率草图数据结构 ● 选择正确的数据库引擎 ● 设计高效的磁盘数据结构和算法 ● 大规模系统中的算法权衡 ● 有限空间资源下的百分
全书围绕IKCEST国际大数据竞赛,即IKCEST 一带一路 国际大数据竞赛暨百度 西安交大大数据竞赛展开,针对每次比赛内容进行深度解析,从任务、基础到冠军模型,以理论和代码相结合的方式,全流程深度剖析比赛过程。九次竞赛题均关注当年的热点领域和方向,分别是 人物关系 知识挖掘、提取子句中的核心实体、宠物分类、商家招牌分类、基于卫星遥感影像和用户行为的城市区域功能分类、高致病性传染病的传播趋势预测和基于车载影像的实时环境感知、 一带一路 重点语种法俄泰阿与中文互译、社交网络中多模态虚假信息甄别,涵盖了社交网络、计算机视觉、自然语言处理等大数据应用的热门领域。 本书可作为全国高等学校大数据及相关专业的教材,也可作为感兴趣的读者了解IKCEST国际大数据竞赛的参考书。
本书主要介绍从高维数据中感知、处理、分析和学习低维结构的基本数学原理和高效计算方法,系统地归纳了建模高维空间中低维结构的数学原理,梳理了处理高维数据模型的可扩展高效计算方法,阐明了如何结合领域具体知识或考虑其他非理想因素来正确建模并成功解决真实世界中的应用问题。本书包括基本原理、计算方法和真实应用三个部分:基本原理部分系统地介绍稀疏、低秩和一般低维模型的基本性质和理论结果,计算方法部分介绍解决凸优化和非凸优化问题的有效算法,真实应用部分通过实例演示利用前两部分的知识改进高维数据处理和分析问题的解决方案。本书适合作为计算机科学、数据科学和电气工程专业的高年级本科生和研究生的教材,也适合学习稀疏性、低维结构和高维数据课程的学生参考。
本书从Power BI的基础功能讲起,逐步深入到Power BI进阶实战,以系统化的实操步骤和丰富的实际案例让读者快速入门Power BI数据分析,掌握Power BI在多个业务领域的实际应用。全书共8章:商业智能与数据分析概述;Power BI简介;数据分析与可视化制作全过程;Power BI数据预处理;Power BI数据建模;Power BI数据可视化;Power BI在线服务;Power BI数据分析实战案例。 本书通俗易懂、循序渐进、内容全面、讲解详细,配备全套数据集、教学课件和学习视频,既适合读者自学Power BI数据分析与可视化,也适合大专院校作为教材,更适合从事销售、产品、电商运营、仓储物流、财务管理、人力资源等岗位的职场人士提升技能。
《数据库系统概念》是数据库系统方面的经典教材之一,其内容由浅入深,既包含数据库系统基本概念,又反映数据库技术新进展。它被国际上许多大学所采用,包括斯坦福大学、耶鲁大学、得克萨斯大学、康奈尔大学、伊利诺伊大学等。
本书以实战案例为主线,以函数理论基础为核心,引导读者从整体上理解Power Query的灵活应用,从实例中获得解决问题的思路和灵感。 本书共24章,分为原理篇、实战篇、函数篇、扩展篇,详细讲解了PQ的原理和函数应用。原理篇详细讲述三大数据结构(简称为三大容器)的原理和M函数的传参,实战篇通过案例讲函数,函数篇按照类名讲函数,扩展篇讲解自定义函数等灵活的应用。 本书的特点是,举一反三把逻辑原理讲透、用类比法强化记忆、案例配套在线视频。不管使用Excel还是PQ处理数据,不仅要求快,更要准确,本书列举了许多数据处理的思维和细节,提醒读者避坑。 本书面向会PQ界面操作的用户,作为从基础到中级水平的进阶参考书。
《极速Python:高性能编码、计算与数据分析》系统性地介绍了Python高性能编程的各种工具和方法,并重点讲解了Python在大数据中的应用。书中配有清晰的示例和详实的分析,可帮助读者熟练掌握NumPy和Pandas,实现高性能的数据存储和I/O。本书高屋建瓴、不留遗漏,读者学习本书后,能从代码到架构对系统进行整体优化。 主要内容 ● 使用Cython重构关键代码。 ● 设计健壮的数据结构。 ● 精简不同架构的代码。 ● 实现Python GPU计算。
这是一本从OLAP核心概念出发,以Presto为例,从整体执行流程到不同SQL的执行原理,完整呈现OLAP查询的核心流程和OLAP引擎设计思路,并指导读者形成OLAP引擎设计解决方案的专业技术工具书。本书不仅面向初级读者介绍了OLAP查询的基本原理和Presto使用方法,还从源码级剖析了OLAP引擎核心原理,包括SQL查询解析器、优化器、调度器、执行器等核心组件,并将内容扩展到OLAP引擎的常见高性能优化方案上。全书由浅入深,图文并茂,把晦涩难懂的内容讲解得透彻易懂。本书分为6篇,包括14章。第一篇(第1章和第2章)总体介绍业界常见的OLAP引擎并分析其优劣,讨论OLAP引擎的技术发展趋势及选型方法,介绍Presto背景知识及其使用方法、技巧。第二篇(第3章和第4章)串讲OLAP查询执行的整个过程,并概要性介绍查询解析器、优化器、调度器、执行器等核心模块的工作原理,
《算法竞赛入门经典 训练指南(升级版)》是《算法竞赛入门经典(第2版)》一书的重要补充,旨在补充原书中没有涉及或者讲解得不够详细的内容,从而构建一个更完整的知识体系。本书通过大量有针对性的题目,让抽象复杂的算法和数学具体化、实用化。 《算法竞赛入门经典 训练指南(升级版)》共包括6章,分别为算法设计基础、数学基础、实用数据结构、几何问题、图论算法与模型以及更多算法专题。全书通过206道例题深入浅出地介绍了上述领域的各个知识点、经典思维方式以及程序实现的常见方法和技巧,并在章末给出了丰富的分类习题,供读者查漏补缺和强化学习效果。 《算法竞赛入门经典 训练指南(升级版)》题目多选自近年来ACM/ICPC区域赛和总决赛真题,内容全面,信息量大,覆盖了常见算法竞赛中的大多数细分知识点。书中还给出了所有重
本书提供了关于如何在数据治理中建立和运行数据认责工作的适用且可操作的信息和说明,旨在为新任数据专员或数据治理经理提供在数据认责方面所需的知识,以确保其工作有效和高效。本书分为11章,包括:数据认责和数据治理:二者如何结合;了解数据认责的类型;认责管理的角色和职责;实施数据认责;培训业务型数据专员;数据认责实践;数据专员的重要角色;衡量数据认责进度:指标;数据认责成熟度评估;大数据和数据湖认责;基于数据域开展数据治理和认责。 本书内容丰富,理论和实践相结合,易读性和可操作性强,可以作为数据质量管理的入门和进阶用书,还可作为数据治理、信息技术、数据分析等领域人员的参考用书,尤其适合对数据认责感兴趣的读者和负责组织以及运行数据认责工作的人员阅读。
这是一套数据指标体系全流程构建(从规划、框架设计、数据采集加工到应用)方法论与实践指南。它不仅深入浅出地分享了通用的数据指标体系构建策略,还通过多个行业实例展示了具体操作方法。书中从数据采集入手,借助BI工具Superset实践构建过程。本着 一切技术都是为业务服务的 这一宗旨,本书除了包含数据指标体系构建相关内容外,还结合统计学原理及Excel、Python等工具,深入剖析数据指标波动对业务的影响,旨在帮助读者深入理解数据指标与实际业务的底层关联,把数据指标体系落地到业务中。第一篇(第1章):深度解读数据指标体系的基础知识,让读者充分理解数据指标,并掌握构建策略、全流程和方法概要,其中包括数据指标体系分类标准、评判优质指标的4个标准、选择数据指标的4个注意事项、数据指标体系3要素、构建指标体系的7个策略等重