《Python青少年趣味编程108例(全视频微课版)》以Python 3.10版本为基础,通过108个案例,详细、全面地介绍Python的基础知识和使用方法,通过制作多种有趣味的编程作品,让读者在思考中充分发挥想象力和创造力。本书共分为9章,第1章概述Python下载、安装的方法和编程环境的应用;第2章介绍Python的基础知识;第3章讲解以条件进行判断的选择结构;第4章探究重复执行的循环结构;第5章讲述字符串的应用方法;第6章介绍列表、元组与字典的作用与方法;第7章分析函数进阶应用的方法;第8章阐述turtle画图应用模块的相关知识;第9章探究运用Python编程语言综合解决实际问题的方法。 《Python青少年趣味编程108例(全视频微课版)》可作为中小学生的编程启蒙读物,也可供对Python编程感兴趣的读者学习参考,还可作为学校编程兴趣班及相关培训机构的教材。
《Python数据可视化:科技图表绘制》结合编者多年的数据分析与科研绘图经验,详细讲解Python语言及包括Matplotlib在内的多种可视化包在数据分析与科研图表制作中的使用方法与技巧。《Python数据可视化:科技图表绘制》分为两部分,共11章,第1部分主要讲解Python语言的基础知识,包括基本语法结构、控制语句、函数、数据处理与清洗等,尤其对Matplotlib、Seaborn、Plotnie库进行较为详细的讲解。第2部分结合Python及其附加包的数据可视化功能,分别讲解类别比较数据、数值关系数据、层次关系数据、局部整体型数据、分布式数据、时间序列数据、多维数据、网络关系数据的可视化实现方法。《Python数据可视化:科技图表绘制》可帮助读者尽快掌握利用Python及可视化库进行科技图表的制作与数据展示。 《Python数据可视化:科技图表绘制》注重基础,内容翔实,突出示例讲解,
《Python金融大数据分析 第2版》分为5部分,共21章。第1部分介绍了Python在金融学中的应用,其内容涵盖了Python用于金融行业的原因、Python的基础架构和工具,以及Python在计量金融学中的一些具体入门实例;第2部分介绍了Python的基础知识以及Python中非常有名的库NumPy和pandas工具集,还介绍了面向对象编程;第3部分介绍金融数据科学的相关基本技术和方法,包括数据可视化、输入/输出操作和数学中与金融相关的知识等;第4部分介绍Python在算法交易上的应用,重点介绍常见算法,包括机器学习、深度神经网络等人工智能相关算法;第5部分讲解基于蒙特卡洛模拟开发期权及衍生品定价的应用,其内容涵盖了估值框架的介绍、金融模型的模拟、衍生品的估值、投资组合的估值等知识。 《Python金融大数据分析 第2版》本书适合对使用Python进行大数据分析、处理感兴趣的金融
编程是一项充满乐趣的挑战,想上手非常容易!在本书中,沃伦和卡特父子以亲切的笔调、通俗的语言,透彻、全面地介绍了计算机编程世界。他们以简单易学的Python语言为例,通过可爱的漫画、有趣的示例,生动地介绍了变量、循环、输入和输出、数据结构以及图形用户界面等基本的编程概念。与第2版不同,第3版的示例使用Python3而不是Python2,另外添加了关于网络的新内容。只要懂得计算机的基本操作,任何人都可以跟随本书,由简入难,学会编写Python程序,甚至制作游戏。
Python简单易学,是一种非常适合零基础编程人员学习算法与编程的高级程序设计语言。 本书是中国电子学会全国青少年软件编程等级考试Python编程一至四级的指定用书,基于Python自带的集成开发工具IDLE 3.5.2版本,对应每级考试要求讲解知识要点。 对于广大青少年学习者,本书能够指导他们了解并掌握Python语言编程技巧,培养他们用Python语言编程解决生活中实际问题的能力。
近年来,Python语言凭借其在数据分析领域的优势得以快速发展,众多软件厂商也相继推出了支持Python的量化交易平台。本书是介绍Python编程及其在量化交易领域的实践技巧的图书,旨在帮助读者掌握基本的Python编程技能,并顺利应用于期货量化交易实践。 本书内容分为两篇。篇是Python基础,通过13章内容介绍了Python编程的基础知识,如语法规则、数据类型、函数、类、装饰器、异常处理、进程和线程等;第二篇是期货量化交易,通过8章内容介绍了Python在期货量化交易中的应用,并基于天勤量化交易平台讲解开发实践,涉及pandas模块、TqSdk的接口、函数、量化策略的框架、图形化编程及时间序列相关的知识等。 本书适合对期货量化交易感兴趣的普通投资者和投资机构专业人员阅读,读者可以具备一定的?Python基础,也可以通过本书从头学习Python基础知识,再进一步延
《Python Cookbook(第3版)中文版》介绍了Python应用在各个领域中的一些使用技巧和方法,其主题涵盖了数据结构和算法,字符串和文本,数字、日期和时间,迭代器和生成器,文件和I/O,数据编码与处理,函数,类与对象,元编程,模块和包,网络和Web编程,并发,实用脚本和系统管理,测试、调试以及异常,C语言扩展等。 本书覆盖了Python应用中的很多常见问题,并提出了解决方案。书中包含了大量实用的编程技巧和示例代码,并在Python 3.3环境下进行了测试,可以很方便地应用到实际项目中去。此外,《Python Cookbook(第3版)中文版》还详细讲解了解决方案是如何工作的,以及为什么能够工作。 《Python Cookbook(第3版)中文版》非常适合具有一定编程基础的Python程序员阅读参考。
磨砺编程技能,平替ChatGPT!Python是一门既简单又强大的编程语言,被广泛应用于数据分析、大数据、网络爬虫、自动化运维、科学计算和人工智能等领域。Python也越来越重要,成为国家计算机等级考试科目,某些中小学也开设了Python编程课程。本书秉承有趣、有料、好玩、好用的理念,通过3个漫画人物的轻松对话、搞笑形象及夸张动作,把复杂的Python技术问题简单化。本书总计16章:第1章介绍Python的历史和特点,并进行开发环境搭建;第2~5章介绍Python的基础知识,包括数据类型、表达式、流程控制等;第6~7章介绍Python常用的容器类型数据和字符串数据;第8~11章介绍Python的进阶内容,包括函数、类与对象、异常处理、常用内置模块等;第12~16章介绍Python实用库的使用方法,包括文件读写、图形用户界面、网络通信、数据库访问和多线程等。本书在每一章中都
本书通过500个实例,为读者提供较为详细的练习题目,以便读者举一反三,深度学习。本书实例涉及的算法包括搜索、回溯、递归、排序、迭代、贪心、分治和动态规划等;涉及的数据结构包括字符串、数组、指针、区间、队列、矩阵、堆栈、链表、哈希表、线段树、二叉树、二叉搜索树和图结构等。书中所有实例均以问题描述、问题示例、代码实现及运行结果的形式来编排。 本书语言简洁,通俗易懂,适合作为Python编程人员的入门参考书,也适合作为高等院校相关专业 Python算法实现 课程的参考教材。
本书以PySide6/PyQt6的实际应用为主线,以理论基础为核心,引导读者渐进式学习PySide6/PyQt6的编程基础和实际应用。 本书共12章,可分为5部分。第一部分介绍基于项的控件、基于模型/视图的控件(第1章和第2章),第二部分介绍处理数据库、文件、路径、缓存相关的类和应用方法(第3章和第4章)、第三部分介绍使用Graphics/View框架绘图、绘制二维图表和三维图表的相关类和应用方法(第5~7章)、第四部分介绍处理网络、多媒体、打印机、QML相关的类和应用方法(第8~11章)。第五部分以案例的形式介绍了如何使用PySide6和其他Python模块编写实用程序的方法,并介绍了制作程序安装包的方法(第12章)。 本书示例代码丰富,实用性和系统性较强,并配有视频讲解,助力读者透彻理解书中的重点、难点。本书适合初学者入门,精心设计的案例对于工作多年的开发者也有参考
本书Python新手入门经典图书,涵盖了Python编程的方方面面。本书前半部分介绍了基础知识与概念:从安装Python、配置开发环境,到列表、元组、字符串、字典以及各种语句的基础知识,再到抽象、异常、方法、属性、迭代器等核心概念,Python与数据库、网络、C语言等工具结合使用,以及Python程序测试、打包、发布等知识。本书的后半部分,向读者详尽介绍了当下流行的多个Python项目的开发过程。 本次修订,不仅在结构与细节知识上进行了优化和完善,还增加了贴近真实商业环境的案例,并辅以课件PPT和专门针对求职应聘的习题,旨在帮助读者真正掌握Python开发的实战能力。
本书分为上、下两大部分,共计22章。部分(第1~11章)由浅入深地介绍Python的基础知识,包括变量、数值、条件语句、文本字符串、循环语句、元组、列表、字典、集合、函数、对象、类、模块、库,等等。掌握这些基础知识将为运用Python奠定牢固的基础。第二部分(第12~22章)介绍Python的应用,所涉及的领域包括Web应用、数据库、网络和机器学习。你将学会用Python处理时间、进行网络通信、完成数据科学任务等,还会了解并发的相关知识。
数字化转型背景下,Python作为一门简单、易学、速度快、免费、开源的主流编程语言,广泛应用于大数据处理、人工智能、云计算等各个领域,是众多高等院校学生的必修基础课程,也是堪与Office办公软件应用比肩的职场人士的技能。同时随着数据存储、数据处理等大数据技术的快速进步,机器学习的各种算法在各行各业得以广泛应用,同样成为高校师生、职场人士迎接数字化浪潮、与时俱进提升专业技能的必修课程。本书将 Python课程学习 与 机器学习课程学习 有机结合,推动数字化人才的培养,提升人才的实践应用能力。 全书内容共17章。第1、2章介绍Python的入门知识和进阶知识;第3章介绍机器学习的概念及各种术语及评价标准;第4~10章介绍相对简单的监督式学习方法,包括线性回归算法、二元Logistic回归算法、多元Logistic回归算法、判别分析算法、朴素贝叶斯
Python 因其简单易学、功能强大、开发效率高、拥有强大的第三方库等优点,使其成为学习人工 智能的编程语言。《NumPy 数据处理详解 Python 机器学习和数据科学中的高性能计算方法》就 从 Python 中经常使用的 NumPy 库的基础知识入手,讲解了实用的高速数据处理方法。大数据时代, NumPy 因其包含大量的数学函数,能够处理多维数组,而且处理速度堪比 C 语言,所以 NumPy 也成 为机器学习和数据科学领域数据处理不可或缺的库。全书详细介绍了 NumPy 基础知识、NumPy 与数组 操作、NumPy 数学函数的应用和 NumPy 机器学习编程方法,特别适合机器学习工程师、数据科学家、 人工智能开发相关人员系统学习 NumPy 使用方法,或将此书作为案头手册,随时翻阅查看。
《Python语言科研绘图与学术图表绘制从入门到精通》系统介绍了使用Python语言进行数据处理、分析和科研绘图的相关知识和技能。 全书共11章,第1章讲解Python基础,第2章讲解数据处理与分析,第3章讲解科研绘图与学术图表绘制库,第4章讲解绘制单变量图形,第5章讲解绘制双变量图形,第6章讲解绘制多变量图形,第7章讲解绘制其他2D图形,第8章讲解绘制3D图形,第9章讲解地理信息可视化,第10章讲解数据学术报告、论文和出版,第11章讲解实战训练营。 《Python语言科研绘图与学术图表绘制从入门到精通》包含大量实例,内容由浅入深,循序渐进,既可作为Python与数据科学相关技能的教材,也可作为研究人员的实用手册,尤其适合需要绘制高质量科研图表的研究人员和在读研究生。
《Python数据科学手册》是对以数据深度需求为中心的科学、研究以及针对计算和统计方法的参考书。本书共五章,每章介绍一到两个Python数据科学中的重点工具包。首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境;第 2章讲解能提供ndarray对象的NumPy,它可以用Python高效地存储和操作大型数组;第3章主要涉及提供DataFrame对象的Pandas,它可以用Python高效地存储和操作带标签的/列式数据;第4章的主角是Matplotlib,它为Python提供了许多数据可视化功能;第5章以Scikit-Learn为主,这个程序库为重要的机器学习算法提供了高效整洁的Python版实现。《Python数据科学手册》适合有编程背景,并打算将开源Python工具用作分析、操作、可视化以及学习数据的数据科学研究人员。
标准Python程序很容易过载,从而出现慢如龟爬的情况。asyncio库正是为了解决这些问题而构建的,它简化了任务的划分和调度。asyncio可无缝地同时处理多个操作,使应用程序疾如闪电,且具有扩展性。 《Python asyncio并发编程》在大量示例的引导下,介绍异步、并行和并发编程。将难理解的并发内容分解为简明易懂的流程图,使读者可轻松了解任务的运行方式。在本书中,读者将学习如何使用asyncio来突破Python的限制,从而加快Web服务器和微服务的运行速度。读者甚至可将asyncio与传统的多处理技术结合起来,以大幅提升性能。 主要内容 ● 通过aiohttp构建支持并发Web请求的Web API ● 同时运行海量SQL查询 ● 创建一个可并行处理数GB数据的map-reduce作业 ● 在asyncio中使用线程来混合阻塞代码和asyncio代码
本书主要从数学规划的视角出发,系统地介绍了数学优化问题建模和求解的相关理论、方法、实际案例,以及基于 Python 和数学规划求解器(COPT 和 Gurobi)的编程实战。全书共分为四部分。第一部分为基本理论和建模方法,重点介绍了数学规划模型分类和建模方法(包括逻辑约束与大 M 建模方法、线性化方法)以及计算复杂性理论。第二部分为建模案例详解,通过理论、案例和实战相结合的方式,详细介绍了如何利用各种建模方法和数学规划求解器对实际生产活动中的优化问题进行建模和求解。这部分内容丰富,案例翔实,代码完整,旨在提高读者的实战能力。第三部分和第四部分聚焦于编程实战,主要讲解如何使用 COPT 和 Gurobi 求解器进行数学规划模型的编程求解。这两部分内容涵盖了调用数学规划求解器的各种高级用法,可以满足读者实现定制化求解的需求。本
Spark数据处理引擎是一个惊人的分析工厂:输入原始数据,输出洞察。PySpark用基于Python的API封装了Spark的核心引擎。它有助于简化Spark陡峭的学习曲线,并使这个强大的工具可供任何在Python数据生态系统中工作的人使用。 《Python和PySpark数据分析》帮助你使用PySpark解决数据科学的日常挑战。你将学习如何跨多台机器扩展处理能力,同时从任何来源(无论是Hadoop集群、云数据存储还是本地数据文件)获取数据。一旦掌握了基础知识,就可以通过构建机器学习管道,并配合Python、pandas和PySpark代码,探索PySpark的全面多功能特性。 主要内容 ● 组织PySpark代码 ● 管理任何规模的数据 ● 充满信心地扩展你的数据项目 ● 解决常见的数据管道问题 ● 创建可靠的长时间运行的任务
本书是《看漫画学Python》的进阶版本,继续秉承有趣、有料、好玩、好用的理念,并继续采用《看漫画学Python》一书中3个不同的漫画人物角色,通过这3个角色之间的轻松对话把复杂的技术问题简单化。本书总计12章。第1章讲解Python的IDE工具PyCharm的基础知识、高级功能和调试功能;第2章讲解如何用Python绘图库Turtle绘制基本图形;第3章讲解Python的Qt库PyQt的基础知识和用法;第4章讲解如何用分词库实现分词,以及如何用词云库形成词云;第5章讲解如何用OpenCV库实现图像处理和人脸检测;第6章讲解网络爬虫技术;第7章讲解如何用Python访问MySQL;第8章讲解如何用Python解析XML文档;第9章讲解如何用xlwings库操作Excel文件;第10章讲解如何用pyecharts库进行数据可视化。第11~12章通过两个项目实战帮助读者将前10章所学的内容融会贯通。本书贯穿了动手实践环节,旨在帮助读者
《Python算法从入门到实践》是一本综合讲述算法和数据结构的入门书,全面介绍了当下比较实用的算法,并利用图文结合的方式详细讲述了每个算法。全书共分为14章,包括走进算法的世界、算法编程基础、查找算法、散列表、排序算法、递归算法、动态规划算法、贪心算法、回溯算法、链表算法、树形结构算法、图形结构算法、其他算法、数学经典算法等。本书从用户学习与应用的角度出发,所有算法都结合具体生活实例进行讲解,涉及的程序代码给出了详细的注释,并且运用大量的示意图和实例应用,力求打造轻松、零压力的学习氛围,以便使读者轻松掌握使用算法,快速提高开发技能,拓宽职场道路。 本书列举了小型实例和综合实例,所有实例都提供源码,力求为读者打造一本结合了 基础入门 应用开发+实战 一体化的Python算法图书。 本书内容详尽,图文
本书为数据科学领域经典热销书升级版,基于GitHub热门开源项目,全面涵盖数据分析与数据科学领域的重要工具。全书共分为五部分,每部分介绍一两个Python数据科学中的重点工具包。首先从IPython和Jupyter开始,它们提供了数据科学家需要的计算环境;第二部分讲解NumPy如何高效地存储和操作大型数组;第三部分讲解pandas如何高效地存储和操作带标签的列式数据;第四部分聚焦Matplotlib,展示其丰富的数据可视化功能;第五部分以scikit-learn为主,这个程序库为最重要的机器学习算法提供了高效整洁的Python版实现。本书适合有一定Python使用经验,并想进一步掌握Python数据分析能力的读者。