本书是享誉全球的Python入门书,影响了超过250万读者。全书分两部分:部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件和异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第3版进行了全面修订:使用了文本编辑器VS Code,新增了介绍removeprefix()方法和removesuffix()方法的内容,并且在项目中利用了Matplotlib和Plotly的特性,等等。
《小学生Python创意编程(视频教学版)》《Python编程入门与实践》是一本适合孩子、家长和职场办公人员学习的Python编程教材。本书以Python基础为起点,深入浅出地介绍了Python自动化编程的知识和技巧。无论你是初学者还是有一定编程基础的读者,本书都能满足你的需求。 本书采用了孩子喜欢的趣味方式编写,语言简洁易懂,让读者轻松愉快地学习Python编程。同时,本书也按照入门开发者的思维方式编写,为孩子提供了学习编程的基础知识。如果你是成人或非计算机专业的学生,本书同样适合你,帮助你轻松掌握Python编程。 无论你是想学习编程提升职业技能,还是培养孩子的计算思维能力,本书都是你的不二选择。快来阅读本书吧,开启编程的奇妙世界!
《机器学习 : 全彩图解 微课 Python编程》是 鸢尾花数学大系:从加减乘除到机器学习 丛书的最后一册,前六本解决了编程、可视化、数学、 数据方面的诸多问题,而《机器学习 : 全彩图解 微课 Python编程》将开启机器学习经典算法的学习之旅。 《机器学习 : 全彩图解 微课 Python编程》设置了 24 个话题,对应四大类机器学习经典算法(回归、分类、降维、聚类),覆盖算法包括: 回归分析、多元线性回归、非线性回归、正则化回归、贝叶斯回归、高斯过程、k 最近邻分类、朴素贝叶 斯分类、高斯判别分析、支持向量机、核技巧、决策树、主成分分析、截断奇异值分解、主成分分析进阶、 主成分分析与回归、核主成分分析、典型相关分析、 k 均值聚类、高斯混合模型、最大期望算法、层次聚类、 密度聚类、谱聚类。 《机器学习 : 全彩图解 微课 Python编程》选取算
《Python编程 从入门到实践 第3版》 本书是享誉全球的Python入门书,影响了超过250万读者。全书分两部分:第一部分介绍用Python编程所必须了解的基本概念,包括强大的Python库和工具,以及列表、字典、if语句、类、文件和异常、代码测试等内容;第二部分将理论付诸实践,讲解如何开发三个项目,包括简单的2D游戏、利用数据生成交互式的信息图以及创建和定制简单的Web应用,并帮助读者解决常见编程问题和困惑。第3版进行了全面修订:使用了文本编辑器VS Code,新增了介绍removeprefix()方法和removesuffix()方法的内容,并且在项目中利用了Matplotlib和Plotly的最新特性,等等。 《Python编程快速上手 让繁琐工作自动化 第2版》 本书是一本面向初学者的Python编程实用指南。本书不仅介绍了Python语言的基础知识,而且通过案例实践教读者如何使用这些知识和技能。本书的第一部
《Python从入门到精通(第3版)》从初学者角度出发,通过通俗易懂的语言、丰富多彩的实例,详细介绍了使用Python进行程序开发应该掌握的各方面技术。全书共分27章,包括初识Python、Python语言基础、运算符与表达式、流程控制语句、列表和元组、字典和集合、字符串、Python中使用正则表达式、函数、面向对象程序设计、模块、文件及目录操作、操作数据库、使用进程和线程、网络编程、异常处理及程序调试、Pygame游戏编程、推箱子游戏、网络爬虫开发、火车票分析助手、数据可视化、京东电商销售数据分析与预测、Web编程、Flask框架、e起去旅行网站、Python自动化办公、AI图像识别工具等内容。书中所有知识都结合具体实例进行介绍,涉及的程序代码都给出了详细的注释,读者可轻松领会Python程序开发的精髓,快速提升开发技能。
本书是深度学习真正意义上的入门书,深入浅出地剖析了深度学习的原理和相关技术。书中使用Python3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。书中不仅介绍了深度学习和神经网络的概念、特征等基础知识,对误差反向传播法、卷积神经网络等也有深入讲解,此外还介绍了深度学习相关的实用技巧,自动驾驶、图像生成、强化学习等方面的应用,以及为什么加深层可以提高识别精度等疑难的问题。 本书适合深度学习初学者阅读,也可作为高校教材使用。
本书是Python数学分析经典畅销书的升级版,由Python pandas项目的创始人Wes McKinney撰写。自2012年第1版出版以来,迅速成为该领域的权威指南,并且为了与时俱进,作者也在对本书内容进行持续更新,以摒弃一些过时、不兼容的工具,添加新的内容,用以介绍一些新特性、新工具及方法。本书第3版针对Python 3.10和pandas 1.4进行了更新,并通过实操讲解和实际案例向读者展示了如何高效解决一系列数据分析问题。读者将在阅读过程中学习新版本的pandas、NumPy、IPython和Jupyter。
在如今的时代,大型数据集唾手可得,含有数百万行的数据文件并不罕见。Python是数据分析师和数据科学家的语言。通过本书,即使完全不了解Python,Excel用户也能够学会用Python将烦琐的任务自动化,显著地提高办公效率,并利用Python在数据分析和科学计算方面的突出优势,轻松搞定Excel任务。你将学习如何用pandas替代 Excel函数,以及如何用自动化Python库替代VBA宏和用户定义函数等。 本书既适合Excel用户,也适合Python用户阅读。
金融量化分析不仅需要掌握金融领域的知识,还需要掌握相关的计算机编程技术。《Python金融量化分析》全面、系统地介绍金融量化分析所需要掌握的技能。无论是具有丰富的编程经验的读者,还是普通的投资爱好者,均可参照本书内容开发自己的量化交易策略回测代码,实现金融量化分析辅助投资的目的。 《Python金融量化分析》共9章,涵盖的主要内容有金融量化交易策略分析概述,Python的基础语法,Pandas模块基础,NumPy基础,数据获取与清洗,金融量化交易策略实战,TA-Lib、Empyrical与Mplfinance模块的使用方法,金融数据回归分析,ARIMA与VAR模型在金融量化领域的应用,开源金融量化交易策略回测框架Backtrader的使用方法等。掌握这些内容,可以解决金融量化分析涉及的编程语言基础、数据获取、量化交易策略构建、统计学与金融学理论在金融量化领域的高级应用,
《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》是 鸢尾花数学大系:从加减乘除到机器学习 丛书中编程板块的第二册。编程板块第一册《编程不难》着重介绍如何零基础入门Python编程,《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》则在《编程不难》基础之上深入探讨如何用Python完成数学任务及板块数据可视化。 《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》是本系列中的一本真正意义上的 图册 。内容覆盖科技制图、计算机图形学、创意编程、趣味数学实验、数学科学、机器学习等。《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》 毫无节制 地展示数学之美,而且提供特别实用且容易复制的创作思路、做图技巧、编程代码。 《可视之美:数据可视化 数学艺术 学术绘图 Python创意编程》包含8个板块共36章内容。前5个
量化交易是一种新兴的系统化的金融投资方法,它是以计算机强大的运算能力为基础,运用数据建模、统计学分析、程序设计等工具从历史数据中得到良好的交易策略,是计算机科学在金融领域的具体应用。Python语言凭借其简洁、高效的特性,以及其在大数据分析方面的强大性能,在量化交易领域得到了良好的应用。 本书以 A 股市场为交易标的物,引导读者从理解量化交易开始,逐步掌握行情数据的获取和管理、技术指标的可视化,并在熟练编程的基础上,构建出个性化的交易策略体系。 本书适合对股票的量化交易感兴趣的读者阅读,通过阅读本书,读者不仅能够了解 Python 数据分析和数据可视化的核心技能,更能够将 Python 作为常用工具,为股票技术指标分析和量化交易提供助力。
《Python数据可视化:科技图表绘制》结合编者多年的数据分析与科研绘图经验,详细讲解Python语言及包括Matplotlib在内的多种可视化包在数据分析与科研图表制作中的使用方法与技巧。《Python数据可视化:科技图表绘制》分为两部分,共11章,第1部分主要讲解Python语言的基础知识,包括基本语法结构、控制语句、函数、数据处理与清洗等,尤其对Matplotlib、Seaborn、Plotnie库进行较为详细的讲解。第2部分结合Python及其附加包的数据可视化功能,分别讲解类别比较数据、数值关系数据、层次关系数据、局部整体型数据、分布式数据、时间序列数据、多维数据、网络关系数据的可视化实现方法。《Python数据可视化:科技图表绘制》可帮助读者尽快掌握利用Python及可视化库进行科技图表的制作与数据展示。 《Python数据可视化:科技图表绘制》注重基础,内容翔实,突出示例讲解,
Python是当下热门、流行的编程语言之一,不仅有着非常广泛的应用,而且由于其学习门槛较低,易编易学,也非常适合广大中小学生和青少年学习。本书以 青少年学Python编程 为线索,通过浅显易懂的语言及生动形象的典型案例进行讲解,内容安排由浅入深,层层递进。 全书共15章,从零开始,系统地讲解青少年学习 Python 编程的相关知识。每章都精心安排了编程示例,让读者从理解知识轻松过渡到应用知识,达到学以致用的目的。通过对本书内容的学习,旨在帮助广大青少年锻炼逻辑思维,培养分析问题、解决问题的能力。 本书非常适合中小学生学习阅读,尤其适合 10 岁以上的孩子或者他们的父母和老师辅导孩子学习编程使用。本书也可作为广大少儿编程培训机构、少儿编程兴趣班的教材参考用书。
《数据有道 : 数据分析 图论与网络 微课 Python编程》是 鸢尾花数学大系 从加减乘除到机器学习 丛书的第三板块 ( 实践板块 ) 中的一本关于数据 科学的分册。 实践 这个板块,我们将会把学到的编程、可视化, 特别是数学工具应用到具体的数据科学、 机器学习算法中,并在实践中加深对这些工具的理解。 《数据有道 : 数据分析 图论与网络 微课 Python编程》可以归纳为 7 大板块 数据说、数据处理、时间数据、图论基础、图的分析、图与矩阵、图论实践。 这 7 个板块 ( 共 25 章内容 ) 都紧紧围绕一个主题 数据! 《数据有道 : 数据分析 图论与网络 微课 Python编程》以数据为名,以好奇心和疑问为驱动,主动使用 编程 可视化 数学 工具进行探索。《数据有道 : 数据分析 图论与网络 微课 Python编程》将 会回顾鸢尾花书前五本主要的工具,让大家对很多概念从似懂非懂变
本书主要以国内A股市场为例,借助第三方量化交易平台,讲述了KNN、线性模型、决策树、支持向量机、朴素贝叶斯等常见机器学习算法在交易策略中的应用,同时展示了如何对策略进行回测,以便让读者能够有效评估自己的策略。 另外,本书还讲解了自然语言处理(NLP)技术在量化交易领域的发展趋势,并使用时下热门的深度学习技术,向读者介绍了多层感知机、卷积神经网络,以及长短期记忆网络在量化交易方面的前瞻性应用。 本书没有从Python基础语法讲起,对于传统交易策略也只是一带而过,直接将读者带入机器学习的世界。本书适合对Python语言有一定了解且对量化交易感兴趣的读者阅读。
《Python 青少年趣味编程 100 例(微课视频版)》基于 Python 3 详细讲解了 100 多个趣味实例的开发过 程。这些实例由浅入深地介绍了 Python 语言各个语法的使用方式,并展现了程序设计的基本思维和方法。 《Python 青少年趣味编程 100 例(微课视频版)》共 18 章,全书通过实例应用的方式详细介绍了 Python 的基础知识,基本数据类型,Python 中的运算处理,选择语句和循环语句的使用方法,字符串、列表、元组 和字典的使用方法,内置函数和自定义函数的应用,类与对象的使用方法,文件的使用方法,时间与日期数 据的处理方式,在程序开发中实现随机性的方法,数学计算和统计的常见应用,图形图像的应用,以及游戏 开发中的相关技术。 《Python 青少年趣味编程 100 例(微课视频版)》内容通俗易懂,具备较高的趣味性和交互性。书中实 例适合中小学生学习,以领
本书就Python基础知识和交易策略的基本原理为切入点,由浅入深介绍了如何从零基础使用vn.py搭建自己交易系统。本书从原理着手到代码实践,内容由最基本的Python基础知识与Python中金融分析的常用包,逐步由浅入深介绍常用的指标并将使用vn.py进行实现。 本书共分为8章,第1章与第2章介绍vn.py的环境搭建与Python常用的工具包,为后面使用vn.py实现交易策略做准备;第3章与第4章介绍vn.py框架和量化交易的基础知识;第5章到第7章从易到难介绍不同的交易策略并配合大量的实例讲解,进一步巩固vn.py代码的使用,第8章讲解如何在实盘中运行交易策略。 本书面向零基础的新手和有一定计算机与金融知识基础的读者,以通俗易懂的语言和示例阐述量化交易的实现原理,适于对于量化交易有兴趣的读者。带有详细注释的代码将帮助读者进一步理解vn.py的框架和交易策略。
本书是Python领域备受推崇的经典作品,致力于帮助Python开发人员挖掘这门语言及相关程序库的优秀特性,写出简洁、流畅、易读、易维护,并且地道的Python代码。本书着重讲解Python语言所独有的功能,助你成功进阶为Python高手。第2版与时俱进,教你跳出旧有经验,探索并运用地道的Python 3功能。第2版主体内容分为五部分:数据结构、函数即对象、类和协议、控制流、元编程。每一部分都精彩纷呈,通过丰富的示例和细致的讲解,教你充分利用Python特性,写出有效且现代的Python 3代码。
《Python树莓派开发从入门到精通》从初学者角度出发,通过通俗易懂的语言、丰富多彩的实例,详细介绍了使用Python树莓派进行软件和硬件项目开发需要掌握的技术。全书共分为4篇15章,包括树莓派基础、树莓派使用Python、Linux命令、常用操作、常用服务、GPIO基础、简单硬件、高级硬件、控制电机、OpenCV应用、传感器、扩展板、Arduino使用,以及4个小型软件项目实战和智能小车硬件项目实战。书中所有知识都结合具体实例进行介绍,涉及的程序代码给出了详细的注释,可以使读者轻松领会树莓派开发的精髓,快速提高开发技能。本书列举了大量的小型实例、综合实例和部分项目案例;所附资源包中有实例源程序及项目源码等;本书的服务网站提供了模块库、案例库、题库、素材库、答疑服务等。
本书将易懂好学的Python编程语言,与当前使用*广泛的Office办公软件进行结合,旨在解决开发人员、职场人士在大批量、自动化处理表格数据、Word文档数据、PPT数据展示、邮件的自动化处理、网页的自动化操作等方面的问题,通过Python编程实现自动化、智能化、高效化处理办公问题的目标,解放双手,提升工效。 本书具备三大特点:覆盖面广,易学易懂,可操作性强,配视频辅导和案例演练。本书讲解Python自动化办公的知识技能覆盖面非常广,不仅仅融合了Excel办公软件,而且还融合了我们办公常用的Word办公软件、PPT办公软件、邮件的自动化处理、网页的自动化操作,而市面上的书籍仅对Excel办公软件进行了融合;书中配套了微课视频讲解,学习过程中有不懂的地方,直接扫码观看视频即可,方便高效;在讲解Python自动化操作Office软件、邮箱、网页的时候,配备了
了解数据结构与算法是透彻理解计算机科学的前提。随着Python日益广泛的应用,Python程序员需要实现与传统的面向对象编程语言相似的数据结构与算法。本书是用Python描述数据结构与算法的开山之作,汇聚了作者多年的实战经验,向读者透彻讲解在Python环境下,如何通过一系列存储机制有效地实现各类算法。通过本书,读者将深刻理解Python数据结构、递归、搜索、排序、树与图的应用,等等。这一版重写了书中的示例代码,并对诸多内容做了修正。
《Python编程实战:妙趣横生的项目之旅》基于Python语言,通过项目展示Python的奇妙应用,适合Python初学者学习。在本书中,你将使用Python编程语言模拟探索火星、木星以及银河系遥远的地方,体验诗人的意境,了解高级的金融知识等。你还会学到各种各样的技术,如马尔可夫链分析技术、蒙特卡罗模拟、图像叠加技术、基因遗传算法等。与此同时,你还会学习一些模块的使用方法,例如pygame、Pylint、pydocstyle、Tkinter、python-docx、Matplotlib和pillow等。 《Python编程实战:妙趣横生的项目之旅》基于一些有趣的项目进行讲解,能够让读者在新奇的项目案例中体验学习Python的乐趣。此外,读者还能将自己所学的知识与实际的应用程序开发、数据库设计和解决实际问题联系起来,提升自己的项目实践能力。
磨砺编程技能,平替ChatGPT!Python是一门既简单又强大的编程语言,被广泛应用于数据分析、大数据、网络爬虫、自动化运维、科学计算和人工智能等领域。Python也越来越重要,成为国家计算机等级考试科目,某些中小学也开设了Python编程课程。本书秉承有趣、有料、好玩、好用的理念,通过3个漫画人物的轻松对话、搞笑形象及夸张动作,把复杂的Python技术问题简单化。本书总计16章:第1章介绍Python的历史和特点,并进行开发环境搭建;第2~5章介绍Python的基础知识,包括数据类型、表达式、流程控制等;第6~7章介绍Python常用的容器类型数据和字符串数据;第8~11章介绍Python的进阶内容,包括函数、类与对象、异常处理、常用内置模块等;第12~16章介绍Python实用库的使用方法,包括文件读写、图形用户界面、网络通信、数据库访问和多线程等。本书在每一章中都
《Python 量化交易实战》基于 Python 3.7 版本,围绕 Python 即时量化系统的开发实践展开,重 点展示了不同的开发过程及多种场景下的应用。 全书共分为 3 篇:第 1 篇是量化交易基础篇,主要讲解了 Python 量化交易技术、Python 量化 交易环境的搭建和米筐量化回测技术;第 2 篇是爬虫基础与实践篇,主要讲解了爬虫技术的基础应 用、爬取股票个股资金流及板块资金流、基于动态网页爬取股票人气排名、使用多线程爬取股票人 气排名、使用 Appium 爬取游资与机构股票、抓包并获取 API;第 3 篇是个人实践篇,主要讲解了 爬取资源整合及可视化实战、策略主体框架研发实战、即时指标编写实战、布林带开口策略及低分 型策略实战。 本书内容精练,案例丰富,实践性极强,便于快速学习和上手实践,适合具有一定 Python 基础 且对量化交易感兴趣的人员使用,也适合数据科学