算法详解系列图书共有4卷,本书是第2卷 图算法和数据结构。本书共有6章,主要介绍了3个主题,分别是图的搜索和应用、*短路径以及数据结构。附录简单回顾了渐进性表示法。本书的每一章均有小测验、章末习题,这为读者的自我检查以及进一步学习提供了方便。 本书提供了丰富而实用的资料,能够帮助读者提升算法思维能力。本书适合计算机专业的高校教师和学生,想要培养和训练算法思维和计算思维的IT专业人士,以及正在准备面试的应聘者和面试官阅读参考。
算法是计算机科学领域*重要的基石之一。算法是程序的灵魂,只有掌握了算法,才能轻松地驾驭程序开发。 算法详解系列图书共有4卷,本书是第1卷 算法基础。本书共有6章,主要介绍了4个主题,它们分别是渐进性分析和大O表示法、分治算法和主方法、随机化算法以及排序和选择。附录A和附录B简单介绍了数据归纳法和离散概率的相关知识。本书的每一章均有小测验、章末习题和编程题,这为读者的自我检查以及进一步学习提供了较多的便利。 本书为对算法感兴趣的广大读者提供了丰富而实用的资料,能够帮助读者提升算法思维能力。本书适合计算机专业的高校教师和学生,想要培养和训练算法思维和计算思维的IT专业人士,以及在准备面试的应聘者和面试官阅读参考。
本书是普通高等教育"十一五 *规划教材和国家精品课程教材。全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、随机化算法、线性规划与网络流等。书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。 为突出教材的可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版《计算机算法设计与分析习题解答(第5版)》;并免费提供电子课件和教学网站服务。
随着复杂网络研究的深入发展和研究领域的不断 扩展,其应用日益广泛。近年来各类数学建模竞赛中 ,基于复杂网络的题目层出不穷,但目前大部分数学 建模书籍中都没有涉及复杂网络的相关内容,而复杂 网络方面的专著偏重于基础理论和方法,涉及算法程 序实现的很少。 将基本理论和计算机算法实现相结合正是本书编 写的初衷。孙玺菁、司守奎编著的《复杂网络算法与 应用》共计9章,主要涉及复杂网络静态特征,各种 网络模型,复杂网络上的传播模型和动力学分析,复 杂网络上的同步研究,复杂网络中的搜索策略,复杂 网络中的社团结构,网络层次分析法,网络博弈论。 基于Matlab给出了作者自主编写的函数和程序,并对 书中出现的大部分例题配备了程序,便于学生从理论 和求解两个角度入手学习复杂网络的相关理论,在学 习中举一反三、
《数据结构与算法》详细介绍了数据结构与算法分析的核心内容,其中,数据结构知识包括:数据结构概述、线性数据结构、树数据结构、图数据结构、查找与排序等;算法分析与设计知识包括:算法分析与设计概述、算法复杂度分析、分治递归算法、贪心算法、动态规划算法等。 本书采用项目驱动的知识组织方式,以案例为导向引出知识点及其理论基础,并通过配合具体案例程序实现过程,贯通了数据结构算法设计与分析的整体课堂教学过程,特别适合当今的反转课堂,MOOC等新型教学方式。 本书从项目入手引人知识点理论,从而引导学生对知识点进行探索性学习,进而归纳后形成学生能掌握的知识点。
本书是一部系统论述基于生物行为模型的智能优化算法案例与实现的著作。全书共分为6章:第1 章介绍生物启发式计算的研究背景, 对传统生物启发式计算方法进行了概述;第2章介绍将层次型信息 交流拓扑结构引入人工蜂群觅食模型中的内容, 提出基于层次型信息交流机制的多蜂群协同进化优化算 法, 使用该算法在搜索过程中能够维持整个种群多样性的群落级进化, 从而克服传统单层生物启发式优化 模型的 早熟收敛 问题, 并进一步提升算法的收敛速度与收敛精度; 第3章借鉴微生物学**研究成果, 从能量变化角度对细菌构建基于生命周期的优化模型, 进一步介绍基于生命周期的菌群觅食自适应优 化算法;第4章研究如何将改进的蜂群觅食优化算法用于求解聚类问题, 将基于层次型信息交流机制 的多蜂群协同进化优化的聚类优化算法用于教学评价体系;第5章研究如何将基于 L
本书是一本面向中高级程序员的算法教程,借助Python语言,用经典的算法、编码技术和原理来求解计算机科学的一些经典问题。全书共9章,不仅介绍了递归、结果缓存和位操作等基本编程组件,还讲述了常见的搜索算法、常见的图算法、神经网络、遗传算法、k均值聚类算法、对抗搜索算法等,运用了类型提示等Python高级特性,并通过各级方案、示例和习题展开具体实践。 本书将计算机科学与应用程序、数据、性能等现实问题深度关联,定位独特,示例经典,适合有一定编程经验的中高级Python程序员提升用Python解决实际问题的技术、编程和应用能力。
本书旨在系统介绍基于Moreau-Yosida正则化的非光滑优化理论与方法,主要的内容包括:(1)主要介绍凸集和凸函数的概念,次梯度和Moreau-Yosida正则化有关性质;(2)求解非光滑优化问题