本书采用大量图片,通过详细的分步讲解,以直观、易懂的方式展现了各种数据结构和算法的基本原理。第1章介绍了链表、数组、栈等数据结构;从第2章到第8章,分别介绍了和排序、查找、图、安全、聚类、数据压缩等相关算法,较为全面地介绍常见算法与数据结构知识。 本书没有枯燥的理论和复杂的公式,而是通过大量的步骤图帮助读者加深对数据结构原理和算法执行过程的理解,易于理解,便于学习和记忆。将本书作为算法入门的第一步,是非常不错的选择。
本书示例丰富,图文并茂,以简明易懂的方式阐释了算法,旨在帮助程序员在日常项目中更好地利用算法为软件开发助力。前三章介绍算法基础,包括二分查找、大O表示法、两种基本的数据结构以及递归等。余下的篇幅主要介绍应用广泛的算法,具体内容包括:面对具体问题时的解决技巧,比如何时采用分而治之、贪婪算法或动态规划,哈希表的应用,图和树算法,K最近邻算法等。这一版将示例代码更新到了Python 3,并新增了两章专门讨论树,加之诸多修订,使得内容更加完善。
《深入浅出算法竞赛(图解版)》是为帮助读者理解基本的算法思想和编写高效的解决问题的程序而编写的。全书共6章,第1章概述了算法与算法竞赛的知识;第2章介绍了计算机程序解决问题的基本方法 穷举算法与贪心算法;第3章讲解了随机算法,如何利用概率与期望优化算法的效率;第4章讲解了AI的思维模式 搜索算法,如何用更灵活的方式遍历每一种可行解;第5章讲解了动态规划,如何通过状态间的转移,巧妙地规划解;第6章讲解了将大事化小、小事化了的分治算法,如何将问题拆分为易于解决的小问题。 本书配备了大量的算法竞赛试题,使用算法竞赛常用的C 语言编写。同时,本书不拘泥于算法竞赛,在第2 ~ 6章的后每一节给出一段阅读材料,介绍算法有趣的应用,帮助读者拓宽思维。 本书的讲解避开了繁琐枯燥的理论,采用浅显易懂的语言和大量生动
为了帮助有一定编程基础的人群进一步提升自己的Python编程水平及应对编程工作的压力,《算法实例精讲 Python语言实现》全面讲解了9种经典算法理论、65个典型实例的算法设计与分析以及Python语言的代码实现过程。首先从Python数据结构基础入手,然后讲解了各种算法,包括排序算法、动态规划算法、双指针算法、深度优先搜索算法、广度优先搜索算法、贪心算法、递归算法、分治算法、回溯算法等,*后归纳了数据结构中的一些经典问题。这既能帮助初学者理清算法的基本结构,融会贯通地掌握好算法基础知识;又能帮助有一定工作经验的读者巩固基础,进一步提升编程水平;也能帮助求职者为未来面试与工作做好必要的知识储备。 《算法实例精讲 Python语言实现》理论基础与实例应用相结合,实例分析与图解相结合,每个实例均设有详细的思路解析和代码实现,
算法详解系列图书共有4卷,本书是第2卷 图算法和数据结构。本书共有6章,主要介绍了3个主题,分别是图的搜索和应用、*短路径以及数据结构。附录简单回顾了渐进性表示法。本书的每一章均有小测验、章末习题,这为读者的自我检查以及进一步学习提供了方便。 本书提供了丰富而实用的资料,能够帮助读者提升算法思维能力。本书适合计算机专业的高校教师和学生,想要培养和训练算法思维和计算思维的IT专业人士,以及正在准备面试的应聘者和面试官阅读参考。
本书是 逻辑与形而上学教科书系列 中的一本。递归论是数理逻辑的主要分支之一。本书介绍了递归论的基础知识,以及某些有影响的问题与经典构造。本书共分5章。*章介绍了图灵机、递归、递归可枚举等概念以及相关的定理。第二章列举了一些重要的不可判定问题,其中包括希尔伯特第十问题(丢番图整数解判定问题)的否定性结果(即马季亚谢维奇定理)和它的完整证明。第三章介绍了递归论度理论的核心概念和基本事实。在第四章中,读者可以找到递归论中经典的构造技巧 尾节扩张(算术力迫)和有穷损害优先方法。第五章简单介绍了递归论的当前热点 算法随机性理论的基本概念,其中包含马丁-洛夫随机性的几个等价刻画。本书可以作为递归论导论课程的教材,以期为进一步学习与研究递归论建立兴趣并打下基础。本书也可以帮助有兴趣的读者了解递
本书是普通高等教育"十一五 *规划教材和国家精品课程教材。全书以算法设计策略为知识单元,系统介绍计算机算法的设计方法与分析技巧。主要内容包括:算法概述、递归与分治策略、动态规划、贪心算法、回溯法、分支限界法、随机化算法、线性规划与网络流等。书中既涉及经典与实用算法及实例分析,又包括算法热点领域追踪。 为突出教材的可读性和可用性,章首增加了学习要点提示,章末配有难易适度的算法分析题和算法实现题;配套出版《计算机算法设计与分析习题解答(第5版)》;并免费提供电子课件和教学网站服务。
算法是计算机科学领域*重要的基石之一。算法是程序的灵魂,只有掌握了算法,才能轻松地驾驭程序开发。 算法详解系列图书共有4卷,本书是第1卷 算法基础。本书共有6章,主要介绍了4个主题,它们分别是渐进性分析和大O表示法、分治算法和主方法、随机化算法以及排序和选择。附录A和附录B简单介绍了数据归纳法和离散概率的相关知识。本书的每一章均有小测验、章末习题和编程题,这为读者的自我检查以及进一步学习提供了较多的便利。 本书为对算法感兴趣的广大读者提供了丰富而实用的资料,能够帮助读者提升算法思维能力。本书适合计算机专业的高校教师和学生,想要培养和训练算法思维和计算思维的IT专业人士,以及在准备面试的应聘者和面试官阅读参考。
《算法零基础一本通(Python版)》使用 Python 指导读者从零开始学习算法 :由基础数据结构开始,逐步解说信息安全算法,*后也讲解了人工智能入门领域的 KNN 和 K-means 算法。《算法零基础一本通(Python版)》包含约 120 个程序实例,使用约 600 张完整图例,深入讲解了 7 种数据结构和数十种算法,此外也针对国内外著名公司招聘程序员的算法考题做了讲解。《算法零基础一本通(Python版)》实用性强、案例丰富,适合有一定 Python 基础的读者使用,也可作为大中专院校及培训机构的参考教材。
随着复杂网络研究的深入发展和研究领域的不断 扩展,其应用日益广泛。近年来各类数学建模竞赛中 ,基于复杂网络的题目层出不穷,但目前大部分数学 建模书籍中都没有涉及复杂网络的相关内容,而复杂 网络方面的专著偏重于基础理论和方法,涉及算法程 序实现的很少。 将基本理论和计算机算法实现相结合正是本书编 写的初衷。孙玺菁、司守奎编著的《复杂网络算法与 应用》共计9章,主要涉及复杂网络静态特征,各种 网络模型,复杂网络上的传播模型和动力学分析,复 杂网络上的同步研究,复杂网络中的搜索策略,复杂 网络中的社团结构,网络层次分析法,网络博弈论。 基于Matlab给出了作者自主编写的函数和程序,并对 书中出现的大部分例题配备了程序,便于学生从理论 和求解两个角度入手学习复杂网络的相关理论,在学 习中举一反三、
本书既清晰、简洁地介绍了标准数值分析教材所涵盖的内容,也介绍了非传统的内容,比如数学建模、蒙特卡罗方法、马尔可夫链和分形。书中选取的例子颇具趣味性和启发性,涉及现代应用领域(如信息检索和动画)以及来自物理和工程的传统主题。习题用MATLAB求解,使计算结果更容易理解。各章都简短介绍了数值方法的历史。而且还有网上资料。
自动驾驶汽车、自然语言识别、内容推荐引擎的实现都离不开人工智能和机器学习算法。机器学习算法只有在解决具体问题时才能体现价值。本书以解决各种趣味问题为目标,教读者用Python、JavaScript、C 编写机器学习算法,内容深入浅出,兼具实用性与大局观。读者将学习编写遗传算法、启发式算法、爬山算法、模拟退火算法,运用蒙特 卡洛模拟、点格自动机、适应函数解决问题。本书尤其适合对人工智能和机器学习感兴趣的程序员进阶学习。
本书内容包括经典的算法设计技术,主要介绍数据结构和标准模板库、递归与分治策略、动态规划、贪心算法、回溯算法、分支限界算法、图的搜索算法、图论、数论和组合数学问题。本书包括大量的问题实例,并在北京大学、浙江大学和杭州电子科技大学在线题库中精选原题,详细地分析解题的方法,深入浅出地讲解用到的算法,章后的上机练习题也选自在线题库中的典型题目,供读者练习,以巩固所学算法。本书内容基本上涵盖了目前大学生程序设计竞赛所要掌握的算法。 本书结构清晰、内容丰富,适合作为计算机科学与技术、软件工程以及相关学科算法课程的教材或参考书,特别适合有志于参加信息学竞赛和ACM大学生程序设计竞赛的读者学习和训练。
本书是一本面向问题求解的计算机算法普及读物。笔者挑选了24个问题,有些属于计算机科学中的经典,有些则来自游戏等其他领域的场景,旨在提供一个不同于普通算法教科书的视野。在相关求解算法的介绍上大体遵循问题导入、算法思路、算法描述和算法分析的思路,从而使得对每一个问题和算法的讨论相对独立。全书可以任意顺序选读。 本书适合受过高中及其以上教育的读者,适合作为中学信息技术课程改革和大学计算机基础课的教学参考书,也有助于曾经学过计算机相关课程的读者加深关于算法的认识。
本书较为系统地介绍最优化领域中比较成熟的基本理论与方法。基本理论包括最优化问题解的必要条件和充分条件以及各种算法的收敛性理论。介绍的算法有:无约束问题的最速下降法、Newton法、拟Newton法、共辄梯度法、信赖域算法和直接法;非线性方程组和最小二乘问题的Newton法和拟Newton法;约束问题的罚函数法、乘子法、可行方向法、序列二次规划算法和信赖域算法等。还介绍了线性规划的基本理论与单纯形算法以及求解二次规划的有效集法。并简单介绍了求解全局最优化问题的几种常用算法。 作为基本工具,本书在附录中简要介绍了求解线性方程组的常用直接法和选代法以及MATLAB初步知识。
本书系统介绍程序设计中常用的基础算法及典型案例,包括排序算法、递归算法、数论基础、组合数学基础、贪心算法、分治算法、动态规划算法和回溯算法等内容。 全书以图文并茂的方式讲解各种基础算法的分析过程,侧重于基础算法的深入理解与实践,配有大量图表辅助算法的分析过程,适用于有一定程序设计基础、尚未学习数据结构且对算法分析与设计感兴趣的算法初学者。 本书各章节配有典型案例和大量图表,既便于教师课堂讲授,也适合读者自学,可作为高等院校 程序设计基础 课程的延伸和 算法分析与设计 课程的入门教材,也可供程序设计竞赛初学者参考。
内容简介:稀疏建模与现代统计学、信号处理、机器学习联系密切,可以实现从相对较少的观测数据精确复原待估信号,广泛应用于图像重构、数据的参数学习模型、故障诊断、模式识别与雷达信号处理等领域。本书详细讨论了稀疏建模的相关内容,包括对稀疏解产生的问题描述、寻找稀疏解的求解算法、稀疏复原的理论成果以及应用实例等。封底文字:稀疏模型在一些科学应用领域(如基因或神经成像数据中的生物标记发现)特别有用,预测模型的可解译性是其*根本的特点。稀疏性可以极大地提高信号处理的成本效益。《稀疏建模理论、算法及其应用》一书提供了对稀疏建模领域的介绍,包括应用实例、产生稀疏解的问题描述、用于寻找稀疏解的算法以及稀疏复原领域中*近的理论成果。该书将带读者了解稀疏建模有关的*进展,增加对该领域的理解,激发在该领
本书是一本面向中高级程序员的算法教程,借助Python语言,用经典的算法、编码技术和原理来求解计算机科学的一些经典问题。全书共9章,不仅介绍了递归、结果缓存和位操作等基本编程组件,还讲述了常见的搜索算法、常见的图算法、神经网络、遗传算法、k均值聚类算法、对抗搜索算法等,运用了类型提示等Python高级特性,并通过各级方案、示例和习题展开具体实践。 本书将计算机科学与应用程序、数据、性能等现实问题深度关联,定位独特,示例经典,适合有一定编程经验的中高级Python程序员提升用Python解决实际问题的技术、编程和应用能力。
本书通过主人公小灰的心路历程,用漫画的形式讲述了算法和数据结构的基础知识,复杂多变的算法面试题目及算法的实际应用场景。首先介绍了算法和数据结构的总体概念,告诉大家算法是什么,数据结构又是什么,都有哪些用途,如何分析时间复杂度,如何分析空间复杂度。第二章 介绍了最基本的数据结构,包括数组、链表、栈、队列、哈希表的概念和读写操作。第三章 介绍了树和二叉树的概念、二叉树的各种遍历方式、二叉树的特殊形式二叉堆和优先队列的应用。第四章 介绍了几种典型的排序算法,包括冒泡排序、快速排序、堆排序、计数排序、桶排序。第五章 介绍了十余种职场上流行的算法面试题目及详细的解题思路。例如怎样判断链表有环、怎样计算大整数加法等。第六章 介绍了算法在职场上的一些应用,例如使用LRU算法来淘汰冷数据,使用Bitmap算