《大疆TT教育无人机从入门到精通》以大疆TT教育无人机为载体,采用Mind 图形化编程软件为无人机设计飞行程序。《大疆TT教育无人机从入门到精通》 详细讲述无人机的飞行原理、飞行安全、遥控飞行、编程飞行、编队飞行和场景应用等知识,并将 这些知识融入近100个项目式的探究活动,可使读者通过实验探究和无人机编程活动体验飞行的乐 趣。《大疆TT教育无人机从入门到精通》后讲述无人机竞赛方面的内容,包含无人机竞赛的策略以及竞赛程序设计的方法。 《大疆TT教育无人机从入门到精通》可作为小学生和中学生学习无人机的教材或参考书,也可作为无人机竞赛的指导用书,还 适合科技爱好者在自学时选用。
阅读本书,即使读者仅掌握高中数学知识,也能理解和应用强大的机器学习技术!简单来讲,机器学习是一套以算法为基础的数据分析技术,当你提供更多数据时,算法可反馈更好的结果。ML支持许多尖端技术,如推荐系统、面部识别软件、智能扬声器,甚至包括自动驾驶汽车。本书不落窠臼,示例丰富,精选的练习十分有趣,插图清晰,讲解机器学习的核心概念。 《机器学习图解》以简明易懂的方式介绍机器学习的算法和技术。本书不谈深奥的术语,只通过基本代数知识提供清晰的解释。你将使用Python构建有趣的项目,包括垃圾邮件检测和图像识别模型;还将学习一些实用技能,以清理和准备数据。 ? 分类和划分数据的监督算法 ? 清理和简化数据的方法 ? 机器学习包和工具 ? 复杂数据集的神经网络和集成方法 读者阅读本书前,**了解Python基础知识,不必了解机器
《Stable Diffusion AI 绘画从提示词到模型出图》介绍了 Stable Diffusion AI 绘画工具及其使用技巧。书中内容分为两部分: 基础操作篇 ,讲解了 SD 文生图、图生图、提示词、模型、ControlNet 插件等核心技术的应用,帮助读者快速从新手成长为 SD 制图高手; 案例实战篇 ,精选了动漫人物、水墨画、AI 摄影、商业海报、电商模特、产品包装、电影角色等大量 AI 绘画案例,并带有详细的同步教学视频,读者可以边学边做,提高学习效率。 《Stable Diffusion AI 绘画从提示词到模型出图》可作为高等院校平面设计、艺术设计等专业的教材,也适合设计师、游戏师、摄影师,以及美术、绘画、设计等行业的从业人员阅读。
《细说PyTorch深度学习:理论、算法、模型与编程实现》由业界专家编撰,采用理论描述加代码实践的思路,详细介绍PyTorch的理论知识及其在深度学习中的应用。全书分为两篇,共16章。篇为基础知识,主要介绍PyTorch的基本知识、构建开发环境、卷积网络、经典网络、模型保存和调用、网络可视化、数据加载和预处理、数据增强等内容;第二篇为高级应用,主要介绍数据分类、迁移学习、人脸检测和识别、生成对抗网络、目标检测、ViT等内容。本书内容涵盖PyTorch从入门到深度学习的各个方面,是一本基础应用与案例实操相结合的参考书。 《细说PyTorch深度学习:理论、算法、模型与编程实现》理论兼备实例,深入浅出,适合PyTorch初学者使用,也可以作为理工科高等院校本科生、研究生的教学用书,还可作为相关科研工程技术人员的参考书。
计算机视觉有多先进?开一开特斯拉就知道了。深度学习技术已在人脸识别、交互式仿真和医学成像方面取得令人兴奋的突破,但让人心潮澎湃的当属自动驾驶技术。如今,自动驾驶的汽车已经能在高速路上畅意驰骋并对各种复杂路况做出灵活反应了。 计算机如何 理解 它所 看到 的东西?本书试图将深度学习应用于计算机视觉以回答该问题。本书仅用高中代数知识阐明视觉直觉背后的概念。你将了解如何使用深度学习架构来构建视觉系统应用程序,以实现图像生成和人脸识别功能。 主要内容 ●图像分类和目标检测 ●先进的深度学习架构 ●迁移学习与生成对抗网络 ●DeepDream和神经风格迁移 ●视觉嵌入和图像搜索
机器学习是人工智能的核心,而统计思维则是机器学习方法的核心:从随机性中寻找规律性。例如,利用损失最小化思想制定学习策略,采用概率最大化思想估计模型参数,利用方差对不确定性的捕捉构造 k维树,采用贝叶斯公式构建分类决策模型,等等。只有树立正确的统计思维,才能准确高效地运用机器学习方法开展数据处理与分析。本书以统计思维的视角,揭示监督学习中回归和分类模型的核心思想,帮助读者构建理论体系。具体模型包括线性回归模型、K近邻模型、贝叶斯推断、逻辑回归模型、最大熵模型、决策树模型、感知机模型、支持向量机、EM算法和提升方法。 本书共 12章,绪论介绍贯穿本书的两大思维模式,以及关于全书的阅读指南;第 1章介绍一些基本术语,并给出监督学习的流程;第 2章介绍关于回归问题的机器学习方法;第 3~9章介绍关于分
增长是企业利用计算机、大数据、人工智能等新技术实现经营增长的新思路和新方法,本书作为该领域的入门级读物,介绍了AIGC在增长领域的技术和实战应用。本书分为4部分,第1部分、第2部分、第4部分主要针对有兴趣了解AIGC背后技术原理、增长模式的变化以及截至2023年3月业界、学术界的最新技术进展的读者;第3部分包含AI的基础知识、基础模型,并从实战应用角度介绍作为应用开发者如何高效上手与利用最新的开源技术与API,适合有一定技术基础的读者。
本书以通俗易懂的风格介绍了机器学习和深度学习技术,只涉及了基本的数学知识。本书由两位机器学习和深度学习领域的专家编写,书中的案例涵盖了银行、保险、电子商务、零售和医疗等多个行业。本书讲述如何在当今的智能设备和应用程序中使用机器学习和深度学习技术。本书提供了对书中涉及的数据集、代码和示例项目的下载。 l 机器学习和深度学习的概念 l 随机森林和提升方法 l Python编程与统计学基础 l 人工神经网络 l 回归与逻辑回归 l TensorFlow与Keras l 决策树 l 深度学习超参数 l 模型选择与交叉验证 l 卷积神经网络(CNN) l 聚类分析 l 循环神经网络(RNN)和长短期记忆网络(LSTM)
在《强化学习与机器人控制》一书中,专家团队不仅简洁明了地描述了人机交互控制方案,还深入介绍了新颖的无模型强化学习控制器。本书首先简述更先进的人机交互控制方案和强化学习,然后讲解典型的环境模型,最后介绍一些更著名的参数估计识别技术。 《强化学习与机器人控制》提供了严谨的数学推理和演示,这有助于读者理解控制方案和算法。书中还描述了人机交互控制和基于强化学习控制的稳定性和收敛性分析。另外,还讨论了一些前沿话题,如逆运动学和速度运动学解决方案、神经控制以及机器人领域未来可能的发展趋势。 ● 全面介绍基于模型的人机交互控制 ● 详细研究基于欧拉角的无模型人机交互控制和 人机回圈 机制控制 ● 实际讨论机器人位置和力控制的强化学习以及机器人力控制的连续时间强化学习 ● 深入研究使用强化学习来控制
工程师需要知道的机器学习和人工智能提供的实例和图示来自Prosise的AI和ML课程,这]课程受到了全球各地许多公司和研究所的青睐和欢迎。作者不涉及让人滑悚然和望而生畏的数学公式,目的只有一个那就 是面向工程师和软件开发人员,帮助他们迅速入门并通过案例迅速运用人工智能和机器学习来解决业务问题。本书讲帮助读者学会什么是机器学习和深度学习以及两者各有哪些用途;理解常用的深度学习算法的原理及其应用;学会标记和未标记数据,监督学习和非监督学习有何差异;通过scikit-learn和神经网络Keras和TensorFlow ,运用Python来进行机器学习建模;训练和评分地柜模型与-进制和多类粉类器模型 ;构建面检测和面识别模型以及 对象检测模型。本书适合硬件工程师与软件开发人员阅读和参考
我们在当下不得不面对的问题是,在不可抗的AIGC极速进化趋势下,我们应该做什么?怎么做?我们是否可以寻找到AIGC冲击下自身行业的机会? AI 绘画为设计师、艺术家和设计创意从业者们提供了颠覆式的设计创作工具,同时也能让普通人跨越专业软件的技能门槛,打破设计创意的技能垄断,实现真正意义上的创作自由和设计普惠。本书重点聚焦AIGC技术在设计创意领域的发展和应用,系统讲解了人工智能在视觉创意(绘画)领域的巨大潜力,以及它如何改变我们对设计创作方式的认知,同时也结合产业实际情况,真实而客观地揭露AI绘画的能力局限及发展风险。让我们一起用充满想象力的姿态,迎接充满无限可能的未来。
当智能工具成为我们日常生活不可或缺的一部分时,我们很容易忘记人类是如何迈入数字时代并一路走来的。然而,在历史上的一段时期内,聪明的人类却在创建由简单的0和1组成的字符串时遇到了众多极大的困难。《数字革命史》正是向这段历史致敬,没有这段历程,就没有我们今日智能手机、社交网络、互联网服务和人工智能的普及。这本书讲述了人类曾面临的最严峻的挑战,并呈现了现代新技术世界的奥秘。该书围绕五个主要章节带领读者畅游数字革命史之路,探究以惊人速度相继出现的数字技术并启发今天人工智能的新挑战。
《机器学习实战使用R、tidyverse和mlr》将使用RStudio和非常棒的mlr程序包开启你的机器学习之旅。这本实用指南简化了理论,避免了不必要的复杂统计和数学知识,所有核心的机器学习技术都通过图形和易于掌握的示例进行清晰的解释。每一章的内容都十分引人入胜,你将掌握如何把新的算法付诸实践,以解决各种预测分析问题,包括泰坦尼克沉船事件中不同乘客的幸存概率、垃圾邮件过滤、毒酒事件调查等。 主要内容 使用tidyverse程序包处理和绘制数据 监督机器学习和非监督机器学习技术 分类、回归、降维和聚类算法 统计学基础
这是一本具有高中数学知识就能读懂的机器学习图书,书中通过大量程序实例,将复杂的公式重新拆解,详细、清晰地解读了机器学习中常用的数学知识,一步步带领读者进入机器学习的领域。本书共 22 章,主要讲解了数据可视化、math 模块、sympy 模块、numpy 模块、方程式、函数、*小平方法、集合、概率、贝叶斯定理、指数、对数、欧拉数、逻辑函数、三角函数、大型运算符、向量、矩阵与线性回归等数学知识。
本书为读者可视化地呈现了人工智能领域的知识架构、学习路线、常用教材、在线课程、学习工具和常用网站,从而全方位地为读者学习人工智能提供指引,帮助读者精准而高效地学习人工智能,达到快速入门和进阶的目的。 本书内容包括7 个部分:第1 部分阐述 人工智能是什么 的问题;第2 部分解决 人工智能学什么 的问题,即要从理论基础、编程技术、专业领域知识三个层面进行人工智能的学习;第3 ~ 第5 部分为第2 部分的具体展开,描述 人工智能怎么学 的问题,即分别描述了人工智能的理论基础、编程技术、专业领域知识这三个层面该怎么学;第6 部分解决 人工智能前沿信息获取 的问题;第7 部分解决 人工智能论文写作与发表 的问题。
识别关系是机器学习的基础。通过识别和分析数据中的关系,以图为核心的算法(如K-邻近或PageRank)显著提高了机器学习应用的效率。基于图的机器学习技术以全新方式为社交网络、欺诈检测、自然语言处理和推荐系统等领域的机器学习提供了强有力的支持。 《动手学图机器学习》是行业类的权威书籍,旨在倾授如何利用面向图的机器学习算法和工具,充分挖掘结构化和非结构化数据集中的自然关系,读者可以从中吸收图架构和图设计实践的精髓,并学会从容避开常见的陷阱。作者Alessandro Negro通过真实的应用示例,将GraphML(一种图建模语言)概念与实际任务完美联系起来,使读者能够更好地理解图技术在机器学习中的价值,并熟练应用该技术。 ● 大数据平台中的图 ● 推荐、自然语言处理、欺诈检测 ● 图算法 ● 与Neo4j图数据库协作
《基于深度学习的图像处理与实践》循序渐进、深入浅出地讲解了基于深度学习的图像处理的核心知识,并通过具体实例演示了开发深度学习图像处理程序的方法和流程。全书共 14 章,分别讲解了图像识别技术基础,scikit-image数字图像处理,OpenCV 图像视觉处理,dlib机器学习和图像处理,face_recognition人脸识别,采样、变换和卷积处理,图像增强,图像特征提取,图像分割,目标检测,图像分类,国内常用的第三方人脸识别平台,斗转星移换图系统,智能OCR文本检测识别系统等内容。本书语言简洁而不失技术深度,内容全面。 《基于深度学习的图像处理与实践》适用于已经了解了Python语言基础语法,想进一步学习机器学习、深度学习、计算机视觉与图像处理技术的读者,还可以作为大专院校相关专业的师生用书和培训机构的专业性教材。
《概率图模型原理与应用:第2版》分为4部分:第Ⅰ部分给出PGM的总体介绍和动机,并回顾概率论和图论的必要背景知识;第Ⅱ部分描述不考虑决策或效用的模型:贝叶斯分类器、隐马尔可夫模型、马尔可夫随机场、贝叶斯网络、动态和时态贝叶斯网络;第Ⅲ部分首先简要介绍决策理论,然后描述支持决策的模型,包括决策树、影响图、马尔可夫决策过程和部分可观察马尔可夫决策过程;第Ⅳ部分对标准PGM进行了扩展,包括关系概率图模型和因果图模型(因果推理和因果发现),还对深度学习及其与PGM的关系进行介绍。