在人工智能的浪潮中,大语言模型技术正以前所未有的速度改变着我们的生活与工作方式。作为这个领域的后起之秀,DeepSeek凭借其开源与高性能的技术路线在2024年年末崭露头角,并迅速成为全球领先的人工智能应用平台之一。本书循序渐进地介绍了DeepSeek相关的各方面知识、经验和技巧,系统梳理了DeepSeek的结构化提示词技巧,并附有大量的模板实例。此外,本书介绍了DeepSeek的特色功能玩法、场景实战应用、高级应用技巧,以及DeepSeek工具集成和本地部署等相关知识。本书力求使零基础读者轻松掌握DeepSeek的使用方法,并学以致用、融会贯通。
本书将从强化学习最基本的概念开始介绍,将介绍基础的分析工具包括贝尔曼公式和贝尔曼最优公式,之后会推广到基于模型的和无模型的强化学习算法,最后会推广到基于函数逼近的强化学习方法。本书强调从数学的角度接引入概念、分析问题、分析算法。并不强调算法的编程实现,因为目前已经有很多这方面的书籍,本书将不再重复造轮子。 本书面向对强化学习感兴趣的本科生、研究生、研究人员和企业研究所从业者。 它不需要读者有任何关于强化学习的背景,因为它会从最基本的概念开始介绍。如果读者已经有一些 强化学习的背景,这本书也可以帮助他们更深入地理解一些问题或者带来新的视角。 本书要求读者具备一定的概率论和线性代数知识。本书的附录中包含了一些必需的数学基础知识。
《图解人工智能》从基础概念、历史沿革、基础算法、代表性应用、**研究进展、跨学科交叉成果等多个方面深入介绍人工智能。为满足不同程度学习者的学习需求,全书以图片为主并辅以少量文字说明,每节配有 小清爱提问 在线视频,具有初等阅读能力的读者(包括中小学生)可以轻松获得人工智能的基础知识和全局视野;每一节还包括扩展学习资料、深入阅读材料和编程实践资源供高等阅读能力的读者(包括大学生和教师)自学提高。为配合课堂教学,全书每一节都配有PPT课件、附加视频资料、互动演示程序等教学资源。对应不同知识背景的读者,本书有速读、专业、教学3种建议阅读模式。 期待更多人能借此书产生对人工智能学科的探索热情! 本书封面贴有清华大学出版社防伪标签,无标签者不得销售。版权所有,侵权必究。
DeepSeek三本套装,让你从新手到高手! 《高效使用DeepSeek》DeepSeek保姆级教程!它能指导我们每个人零基础轻松掌握DeepSeek的高效使用方法,成为使用DeepSeek的高手,走在时代的前列。作者卢森煌有多年的创业经验,是AI应用领域的资深专家,是多家500强企业的AI实施顾问,为数百家企业提供了AI应用方面的培训和咨询,本书内容是基于这些经验的总结。本书得到了北青传媒总裁、阿里云副总裁、快手副总裁等多位专家高度评价。 《DeepSeek使用指南》进阶顾问级教程!本书聚焦于DeepSeek的使用方法和技巧,直击30多个高频工作场景,通过100余个开箱即用的提示词模板,助你实现职场的弯道超车。从3分钟速出会议纪要、1键生成爆款思维导图,到悬疑剧本创作、短视频分镜设计,再到法律文书润色、学术数据可视化。无论是PPT排版 效率革命 、海报文案 灵感爆发 ,还是商
《DeepSeek 从入门到精通(微课视频版) 提示词设计 多场景应用 工具深度融合》 是一本系统讲解大模型 DeepSeek 应用方法的实用指南,内容涵盖从入门操作、提示词设计、本 地与云端部署到上百种实际场景应用,以及AI 智能体设计,全面展示了 DeepSeek 在办公、写作、 编程、教育、创意等领域的强大能力。全书结构清晰,配合丰富案例与实操技巧,帮助读者快 速掌握与大模型高效交互的方法。 本书最大特色在于实用性与前瞻性并重,既有提示词设计的系统讲解,提供100 提示词模 板,又有 DeepSeek 与 WPS、Word、Excel、Xmind、剪映等常用软件的深度融合案例,真正实 现AI 赋能日常工作与创作。无论你是职场人士、内容创作者、教师学生,还是对大模型感兴趣 的开发者,本书都将为你提供可操作、可落地的指导,助你在 AI 时代实现效率与创意的双重飞跃。
内容简介 这是一部对人工智能充满敬畏之心的匠心之作,《深入理解Java虚拟机》作者耗时一年完成,它将带你从奠基人物、历史事件、学术理论、研究成果、技术应用等5个维度全面读懂人工智能。 本书以时间为主线,用专业的知识、通俗的语言、巧妙的内容组织方式,详细讲解了人工智能这个学科的全貌、能解决什么问题、面临怎样的困难、尝试过哪些努力、取得过多少成绩、未来将向何方发展,尽可能消除人工智能的神秘感,把阳春白雪的人工智能从科学的殿堂推向公众面前。 全书共8章,逻辑上分为4个部分: 部分 人工智能的起源(第1~2章) 阐述了在人工智能学科创立之前,图灵、香农等先驱们对智能的探索和思考。首先以 人工智能之父 图灵的生平事迹为主线,介绍了图灵机、图灵测试,以及图灵对智能的思考、理解和定义;然后以达特茅斯会议为主线,
这是一部从技术原理、行业应用、商业价值、投资创业、发展趋势5个维度讲解AI Agent的著作,具有科普书和商业书的双重属性。 本书首先详细介绍了AI Agent的技术路径及其在11大领域的应用,丰富的应用案例可以帮助读者深度理解AI Agent产品形态与服务方式;然后深入探讨了AI Agent的商业价值与商业生态,并对AI Agent的企业级应用和投资创业做了很多思考与总结,能够带给读者应用与创业方面的启发。本书将技术、应用及商业理念融会贯通,理论性与实用性兼具,是一本适合业内外人士快速了解AI Agent、提升行业认知的综合指南,得到了很多行业人士、专家及创业者的一致好评。 全书共15章,分为四个部分: 第一部分(第1~3章) 技术认知 首先,介绍AI Agent的概念、特征、定义、发展历程、分类方式,以帮助读者全面认知AI Agent;然后,介绍AI Agent核心技术,展示其技
内容简介这是一本人人都能读懂的大模型综合指南,既是一本大模型的科普书,又是一本大模型的商业书。由中国电信研究院天翼智库官方出版,从核心技术、基础设施、商业应用、产业体系、安全治理5个维度全面讲解了大模型。语言上通俗易懂,内容上深入浅出,呈现上图文并茂,给读者良好阅读体验的同时,让读者对大模型的理解事半功倍!无论你是AI工程师,还是完全没有IT技术背景的爱好者;无论你是一线的从业人员,还是企业的管理者和决策者,你都能通过本书系统理解和掌握大模型,从而深刻认识大模型的核心价值和应用潜力,把握住大模型带来的变革和商机。通过阅读本书,我们每个人都能从中收获以下知识:(1)AI的本质和AI发展的4个阶段;(2)大模型的核心技术和大模型的技术进化路线;(3)大模型的算力基础设施和数据基础设施;(4)基座
本书分为两大部分:di一部分主要基于Scikit-Learn,介绍机器学习的基础算法;第二部分则使用TensorFlow和Keras,介绍神经网络与深度学习。此外,附录部分的内容也非常丰富,包括课后练习题解答、机器学习项目清单、SVM对偶问题、自动微分和特殊数据结构等。书中内容广博,覆盖了机器学习的各个领域,不仅介绍了传统的机器学习模型,包括支持向量机、决策树、随机森林和集成方法,还提供了使用Scikit-Learn进行机器学习的端到端训练示例。作者尤其对深度神经网络进行了深入的探讨,包括各种神经网络架构、强化学习,以及如何使用TensorFlow/Keras库来构建和训练神经网络。本书兼顾理论与实战,既适合在校学生,又适合有经验的工程师。
在大模型逐渐成为智能系统核心引擎的今天,检索增强生成(RAG)技术为解决模型的知识盲区以及提升响应准确性提供了关键性的解决方案。本书围绕完整的RAG系统生命周期,系统地拆解其架构设计与实现路径,助力开发者和企业构建实用、可控且可优化的智能问答系统。 首先,本书以 数据导入 文本分块 信息嵌入 向量存储 为主线,详细阐述了从多源文档加载到结构化预处理的全流程,并深入解析了嵌入模型的选型、微调策略及多模态支持;其次,从检索前的查询构建、查询翻译、查询路由、索引优化,到检索后的重排与压缩,全面讲解了提高召回质量和内容相关性的方法;接下来,介绍了多种生成方式及RAG 系统的评估框架;最后,展示了复杂RAG范式的新进展,包括GraphRAG、Modular RAG、 Agentic RAG和Multi-Modal RAG的构建路径。 本书适合AI研发工程师、企业技术负责
本书主要围绕AI系统的理论基础与技术基础知识展开,结合实例进行介绍,旨在让读者了解AI系统的来龙去脉,形成对AI系统的系统化与层次化的初步理解,掌握AI系统基本理论、技术、实际应用及研究方向,为后续从事具体的学习研究工作和项目开发工作奠定基础。 本书首先介绍AI的历史、现状与发展及AI系统的基本知识,后分为AI硬件与体系结构、AI编译与计算架构、AI推理系统与引擎、AI框架核心模块四篇进行详细介绍,涉及AI系统从底层原理到应用落地的全貌,反映了AI系统架构的前沿技术。
本书全面阐述了现代因果关系分析,展示了因果关系如何从一个模糊的概念发展成为一套数学理论,并广泛用于统计学、人工智能、经济学、哲学、认知科学、卫生科学和社会学等领域。本书提出了一个全面的因果关系理论,它统一了因果关系的概率、操作、反事实和结构方法,并提供了简单的数学工具来研究因果关系和统计关联之间的关系。本书通过融合领域知识、常识约束、文化传承的概念等来补充数据信息,为基于统计的机器学习中遇到的基本问题提供了科学的解决方案。
DeepSeek-R1大模型是一款具备强大自然语言处理能力的人工智能模型,能够高效完成文本生成、翻译、问答、代码编写等多种任务,适合企业级应用和开发者集成。本书系统性地解析了大模型的核心原理、关键技术以及DeepSeek的多个实际应用场景。 全书共分为12章,首先介绍大模型的基础知识与发展历程,从神经网络的起源到大规模预训练模型的演化,再到Transformer、BERT与GPT等模型架构的深入剖析,帮助读者理解大模型的技术基石。其次详细解析了DeepSeek-R1及其Zero版本在强化学习与模型架构上的核心技术,包括混合专家模型、动态学习率调度、分布式训练及高效推理优化策略等。再次聚焦于模型训练与开发实践,介绍API调用、上下文拼接、多轮对话管理、模型微调、知识蒸馏等关键技术,并结合DeepSeek实际案例展示其在数学推理、代码生成等领域的应用。最后着重探讨
本书结合人形机器人研究中各类先进方法,系统地介绍了驱动人形机器人运动的基础知识、推导过程以及应用案例,阐述了人形机器人的运动学、动力学表示方法,解释了ZMP的概念及其与地面反作用力的关系,描述了人形机器人双足行走行为的生成和控制方法,并拓展了其他多种动作的实现方法,最后介绍了动力学建模、仿真和高效动力学的计算方法。
在人工智能蓬勃发展的当下,大模型技术正引领着新一轮的技术变革。《人工智能大模型:动手训练大模型基础》以Python语言为主要工具,采用理论与实践相结合的方式,全面、深入地阐述了人工智能大模型的构建与应用,旨在帮助读者系统理解大模型的技术原理,掌握其核心训练方法,从而在人工智能领域建立系统的技术认知体系。 全书分为五个部分:第一部分从大模型的技术演进历程讲起,重点剖析Python语言在大模型开发中的核心作用;第二部分围绕模型架构设计、训练优化算法及分布式训练策略展开;第三部分深度解读Transformer等主流架构及其变体的实现原理;第四部分涵盖超参数调优、正则化技术、模型评估指标与优化策略;第五部分提供了大模型在自然语言处理、计算机视觉、语音识别等领域的高级应用案例。 《人工智能大模型:动手训练大模型基础
本书在状态空间理论的统一框架下系统深人地介绍了预测控制的滚动优化原理、算法和闭环性能。首先通过本科生熟悉的状态空间模型建立起预测控制从原理到算法和性能分析的每一个细节。然后,介绍了阶跃响应模型和脉冲响应模型的状态空间描述,给出了与传统卷积描述的一致性。据此,遵循预测控制的三个步骤“预测系统未来动态-求解优化问题-解的第一个元素作用于系统”和“滚动时域、重复进行”机制推导了无约束的动态矩阵控制(DMC)和模型算法控制(MAC),分析了闭环性能,给出了闭环稳定性的分离原理。然后,依次讨论了时滞预测控制、约束预测控制、非线性预测控制,以及稳定性和鲁棒性研究的最新进展。最后,介绍了基于滚动优化原理的滚动时域估计和基于现场可编程门阵列(FPGA)的预测控制器实现技术。
本书详尽地覆盖了多模态大模型的算法原理和应用实战,提供了丰富的微调技术细节和实际案例,适合对多模态大模型有兴趣的技术人员深入学习及应用。 本书分为两篇: 算法原理篇 详细介绍了先进的深度学习模型,包括Transformer、GPT系列、深度生成模型,从基本架构、训练方法到特定应用,包括但不限于Seq2Seq结构、位置编码、注意力机制、残差连接、变分自编码器、GAN、ViT、CLIP、Stable Diffusion、各模型训练实践的知识点。此外,探讨了预训练模型的涌现能力、模型参数和通信数据量的估算,以及分布式训练的各种技术,如数据并行、模型并行和混合精度训练等。 应用实战篇 聚焦于深度学习模型的实际应用,特别是文本和图像生成,以及代码生成的应用实战。通过具体实战项目,如利用Stable Diffusion进行图像生成和Code Llama进行代码生成,提供了微调技术的详细细
《DeepSeek大模型 : 技术解析与商业应用》系统讲解了DeepSeek 大语言模型的技术原理与商业实践,既深入剖析模型的核心原理,又提供切实可行的实践指导。全书共分为10 章,从基础概念入手,逐步阐明模型架构、本地部署方法,并详细解析了DeepSeek 提示词的思维链,指导用户如何根据不同需求设计有效的提示词,以实现高效的AI 交互。书中深入探讨了DeepSeek 在多领域的应用:在内容创作方面,利用AI 生成创意文案、优化代码开发与学术写作,从而显著提升效率;在自媒体领域,通过解锁流量密码,为开发者和创作者提供智能支持;在职场环境中,辅助简历优化、面试模拟及知识库构建,全面提升办公效能;在数字艺术设计方面,赋能创作者高效产出作品,激发无限创意表达。此外,本书还讲解了如何通过DeepSeek API 将技术无缝嵌入商业流程,进而构建智能生态系统。