《人工智能的底层逻辑》用科普化的语言介绍了搜索、计算机视听觉、自然语言处理、机器学习、多模态信息处理等人工智能系统中的基础算法和数学模型,它们是实现人工智能的基础。展示了人工智能的底层逻辑,人工智能工作的基本规律。让读者真正搞懂如何给机器装上眼睛和耳朵、如何让机器理解人类语言、如何让机器拥有知识、如何让机器懂逻辑会推理、如何使机器人的言行符合人类的规范。全书深入浅出,通俗易懂,精美的插画更增加了可读性,让读者轻松掌握人工智能本质的内核,搞懂人工智能运行的底层逻辑。
本书系统地讲解了大模型技术、训练算法(包括强化学习、RLHF、GRPO、DPO、SFT与CoT蒸馏等)、 微调与对齐、效果优化及其实践。全书以大语言模型(LLM)为主线,绝大部分内容也适用于多模态大模型(VLM 和MLLM)。本书面向AI算法与工程领域的从业者、相关专业的学生,以及希望深入了解大模型技术、拥抱AI与大模型浪潮的跨行业读者。
《图解人工智能》从基础概念、历史沿革、基础算法、代表性应用、**研究进展、跨学科交叉成果等多个方面深入介绍人工智能。为满足不同程度学习者的学习需求,全书以图片为主并辅以少量文字说明,每节配有 小清爱提问 在线视频,具有初等阅读能力的读者(包括中小学生)可以轻松获得人工智能的基础知识和全局视野;每一节还包括扩展学习资料、深入阅读材料和编程实践资源供高等阅读能力的读者(包括大学生和教师)自学提高。为配合课堂教学,全书每一节都配有PPT课件、附加视频资料、互动演示程序等教学资源。对应不同知识背景的读者,本书有速读、专业、教学3种建议阅读模式。 期待更多人能借此书产生对人工智能学科的探索热情! 本书封面贴有清华大学出版社防伪标签,无标签者不得销售。版权所有,侵权必究。
周志华老师的《机器学习》(俗称 西瓜书 )是机器学习领域的经典入门教材之一。本书是《机器学习公式详解》(俗称 南瓜书 )的第2 版。相较于第1 版,本书对 西瓜书 中除了公式以外的重、难点内容加以解析,以过来人视角给出学习建议,旨在对比较难理解的公式和重点内容扩充具体的例子说明,以及对跳步过大的公式补充具体的推导细节。 全书共16 章,与 西瓜书 章节、公式对应,每个公式的推导和解释都以本科数学基础的视角进行讲解,希望能够帮助读者快速掌握各个机器学习算法背后的数学原理。 本书思路清晰,视角独特,结构合理,可作为高等院校计算机及相关专业的本科生或研究生教材,也可供对机器学习感兴趣的研究人员和工程技术人员阅读参考
本书主要介绍基于视觉的YOLO框架的技术原理和代码实现,并讲解目标检测领域中的诸多基础概念和基本原理,在YOLO框架的基础上介绍流行目标检测框架。本书分为4个部分,共13章。第1部分介绍目标检测领域的发展简史、主流的目标检测框架和该领域常用的数据集。第2部分详细讲解从YOLOv1到YOLOv4这四代YOLO框架的网络结构、检测原理和训练策略,以及搭建和训练的YOLO框架的代码实现。第3部分介绍两个较新的YOLO框架 YOLOX和YOLOv7,着重讲解其设计理念、网络结构和检测原理。第4部分介绍DETR、YOLOF和FCOS在内的流行目标检测框架和相应的代码实现。本书侧重目标检测的基础知识,包含丰富的实践内容,是目标检测领域的入门书,适合对目标检测领域感兴趣的初学者、算法工程师、软件工程师等人员学习和阅读。
这是一本深入讲解 AI 电影制作前沿科技的权威指南,帮助每个人都有机会成为电影导演。本书揭示了 AI 如何革新电影产业,并通过丰富的实践案例和操作指南,帮助读者轻松掌握使用 AI 技术制作短视频和大电影的过程。书中涵盖了 AI 生成脚本、音乐、配音、图片和视频素材等内容,介绍了如何通过数字人技术生成影视演员,并展示了传统虚幻引擎与 AI 技术相结合后的强大潜力。 无论您是电影爱好者、AI 技术研究者,还是专业电影人,本书都将成为您电影创作的指南。
《高效使用Deepseek:探索AI时代的未至之境》是一本关于如何高效使用DeepSeek智能助手的实用指南。书中详细介绍了DeepSeek的各项功能和使用技巧,内容涵盖了从基础的操作教程到高级的办公自动化、知识管理、智能助手应用等方面,帮助读者深入理解和掌握这一AI工具。本书的目的不仅是向用户展示DeepSeek的功能,更重要的是教会他们如何将其应用到实际的生活和工作中,从而提升工作效率和学习能力。 《DeepSeek使用指南:全场景职业应用实践》全面介绍了DeepSeek这一AI工具在多个职业场景中的应用方法和技巧,重点帮助读者在实际工作中提升生产力和创造力。书中通过深入浅出的方式,介绍了如何使用DeepSeek进行文本创作、数据分析、决策支持等工作,内容包括从基础指令到复杂任务拆解,再到行业专用的场景应用,具有很高的实用性和操作性。 《DeepSeek使用指南
《DeepSeek源码深度解析》是一本系统讲解DeepSeek源码及其核心实现原理的技术指南,内容覆盖了从基础概念到高级应用的全流 程知识。全书共7章,结构层层递进。第1章对DeepSeek进行了全面概述,帮助读者构建对DeepSeek系统的整体认 知。第2章聚焦于环境搭建、代码获取与模型部署接入,为后续深入研究提供基础。第3章深入探讨了MoE(混合 专家模型)的基本原理、功能模块与优化技术。第4章详细解析了DeepSeek-V3模型的架构知识,并通过测试验证 展示了系统的实际效果。第5章围绕统一多模态大模型展开,介绍了Janus系列架构、核心技术及工具模块。第6章 针对高分辨率图像场景,探讨了结合MoE、细粒度特征提取与视觉/语言适配器的多模态模型的知识。第7章聚焦 DeepSeek-R1推理大模型,展示了DeepSeek在推理性能与自我进化方面的前沿探索。 《DeepSeek源码深度解析》适合人
内容简介 这是一部对人工智能充满敬畏之心的匠心之作,《深入理解Java虚拟机》作者耗时一年完成,它将带你从奠基人物、历史事件、学术理论、研究成果、技术应用等5个维度全面读懂人工智能。 本书以时间为主线,用专业的知识、通俗的语言、巧妙的内容组织方式,详细讲解了人工智能这个学科的全貌、能解决什么问题、面临怎样的困难、尝试过哪些努力、取得过多少成绩、未来将向何方发展,尽可能消除人工智能的神秘感,把阳春白雪的人工智能从科学的殿堂推向公众面前。 全书共8章,逻辑上分为4个部分: 部分 人工智能的起源(第1~2章) 阐述了在人工智能学科创立之前,图灵、香农等先驱们对智能的探索和思考。首先以 人工智能之父 图灵的生平事迹为主线,介绍了图灵机、图灵测试,以及图灵对智能的思考、理解和定义;然后以达特茅斯会议为主线,
深度学习框架中蕴藏着惊人的技术和有趣的机制,本书旨在揭开这些技术和机制的神秘面纱,帮助读者正确理解技术,体会它们的有趣之处。为此,本书会带领读者从零开始创建一个深度学习框架 DeZero。DeZero 是本书原创的框架,它用少的代码实现了现代深度学习框架的功能。本书分60 个步骤来完成这个框架,在此过程中,读者会加深对PyTorch、TensorFlow 和Chainer 等现代深度学习框架的理解,看清深度学习框架的本质。 本书沿袭《深度学习入门:基于Python 的理论与实现》的风格,语言通俗,代码简洁,讲解详细。在自制框架的过程中,读者还能进一步巩固Python 编程和软件开发相关的知识。 本书适合对深度学习框架感兴趣的读者阅读。
本书前半部分介绍强化学习的重要思想和基础知识,后半部分介绍如何将深度学习应用于强化学习,遴选讲解了深度强化学习的最新技术。全书从最适合入门的多臂老虎机问题切入,依次介绍了定义一般强化学习问题的马尔可夫决策过程、用于寻找最佳答案的贝尔曼方程,以及解决贝尔曼方程的动态规划法、蒙特卡洛方法和TD方法。随后,神经网络和Q学习、DQN、策略梯度法等几章则分别讨论了深度学习在强化学习领域的应用。本书延续 鱼书 系列的风格,搭配丰富的图、表、代码示例,加上轻松、简明的讲解,让人循序渐进地理解强化学习中各种方法之间的关系,于不知不觉中登堂入室。
本书通过Python示例介绍人工智能技术在金融数据分析中的应用。你将了解如何运用神经网络、强化学习等深度学习技术预测金融市场。本书分为六大部分。部分介绍人工智能算法的核心概念,包括监督学习和神经网络,并描绘超级人工智能愿景。第二部分讨论机器学习技术在金融市场中的应用。第三部分更进一步,讨论如何利用神经网络和强化学习技术解决金融市场中的统计失效问题。第四部分详述如何利用算法交易解决统计失效问题。第五部分展望未来,探讨人工智能会如何改变金融业。第六部分给出以Python实现的神经网络,可用于时间序列预测。
本书是一本全面探索DeepSeek大语言模型应用的实用指南,涵盖了近200个精心设计的实用案例,以 场景思维 为核心,从用户实际需求出发,系统地展示了DeepSeek如何在日常工作、学习和生活的各个方面发挥智能助手的作用。 全书共分为20章,内容丰富且有层次: (1)从基础工具使用和提示词工程入门,到内容创作、知识工作、创意设计等应用场景,涵盖了多个专业领域(医疗、金融、法律、心理)的深度应用。 (2)介绍了日常生活、创业自媒体、行业赋能的多维度实践,提供了API集成方案和30个精选高频场景的深度解析; (3)每个实例都针对特定用户群体的痛点和需求,提供了具体、可操作的解决方案,帮助读者快速掌握如何将DeepSeek融入工作流程,真正实现AI赋能。 书中不仅关注 如何使用 ,更着眼于 为何使用 和 何时使用 ,帮助读者建立对AI辅助工具的系统性
本书强调 把 AI作为方法 (AI即 Artifcial Intelligence,人工智能)这一核心理念,旨在引导读者掌握与 AI对话的关键技巧,并将AI融入工作和生活真正体验 AI带给人类的高效与便捷。 本书从技术的发展规律人手,探讨了把AI作为方法的必然性和必要性,进一步剖析了算法与哲学在内在逻辑上的贯通性。此外,本书通过丰富多样的案例展示了 AI的强大魅力,通过一系列 召唤术 帮助读者运用AI创造性地完成各种各样的任务,在这个过程中体验和掌握运用AI的核心技巧。 本书适合对 AI有研究兴趣、有使用需求、有产品研发需求或有投资意向的读者阅读。读者可扫描文中的二维码了解本书所介绍的与AI交互的秘诀。
本书结合人形机器人研究中各类先进方法,系统地介绍了驱动人形机器人运动的基础知识、推导过程以及应用案例,阐述了人形机器人的运动学、动力学表示方法,解释了ZMP的概念及其与地面反作用力的关系,描述了人形机器人双足行走行为的生成和控制方法,并拓展了其他多种动作的实现方法,最后介绍了动力学建模、仿真和高效动力学的计算方法。
ChatGPT是当下最新、最热门的工具、效率工具,但为什么不同的人使用效果天差地别,整体上来说:一是认知上的不足;二是方法上的不足。这正是本书要解决的问题。本书不仅让读者会用ChatGPT,更尝试让读者意识到自己需要构建一个完整的学习体系,同时本书提供构建这个学习体系的方法。有了这个学习体系,才能真正用好ChatGPT,也不止能用好ChatGPT。读者能够根据自己的需求,用好ChatGPT,既不停留在浅尝辄止,也不相信宣称的人人都能用ChatGPT赚钱。
本书旨在采用一种符合读者认知角度且能提升其学习效率的方式来讲解深度学习背后的基础知识。 本书总计9章,深入浅出地介绍了深度学习的理论与算法基础,从理论到实战全方位展开。前三章旨在帮助读者快速入门,介绍了必要的数学概念和工具的用法。后六章沿着深度学习的发展脉络,从最简单的多层感知机开始,讲解了深度神经网络的基本原理、常见挑战、优化算法,以及三大典型模型(基础卷积神经网络、基础循环神经网络和注意力神经网络)。 本书系统全面,深入浅出,且辅以生活中的案例进行类比,以此降低学习难度,帮助读者迅速掌握深度学习的基础知识。本书适合有志于投身人工智能领域的人员阅读,也适合作为高等院校人工智能专业的教学用书。