本书将从强化学习最基本的概念开始介绍,将介绍基础的分析工具包括贝尔曼公式和贝尔曼最优公式,之后会推广到基于模型的和无模型的强化学习算法,最后会推广到基于函数逼近的强化学习方法。本书强调从数学的角度接引入概念、分析问题、分析算法。并不强调算法的编程实现,因为目前已经有很多这方面的书籍,本书将不再重复造轮子。 本书面向对强化学习感兴趣的本科生、研究生、研究人员和企业研究所从业者。 它不需要读者有任何关于强化学习的背景,因为它会从最基本的概念开始介绍。如果读者已经有一些 强化学习的背景,这本书也可以帮助他们更深入地理解一些问题或者带来新的视角。 本书要求读者具备一定的概率论和线性代数知识。本书的附录中包含了一些必需的数学基础知识。
工业数字化时代已经到来,基于模型的系统工程和设计已经成为工业 智 造的手段。数字化设计在汽车行业的需求体现得尤为明显,模型作为数字化设计的主线索已经贯穿于从产品概念、系统需求、软件架构、软件实现到软件组件测试、软件集成验证、系统集成验证、产品交付的各个环节。本书既从广度上重点介绍了Simulink工具平台在各个工业领域上的广泛应用,又从深度上剖析了Simulink从架构、建模、仿真、代码生成、自动化测试与验证到硬件生态建设这样一条完整的产品建设思路。 本书是面向汽车电子、航空电子、工业控制、智能家电、无人机系统、机器人控制、电力电子等多个工业领域而撰写的专业著作,可供相关行业的公司、研发团队、工程师以及高校师生参考。
本书系统介绍了机器学习的基本内容及其代码实现,是一本着眼于机器学习教学实践的图书。 本书包含4个部分:第一部分为机器学习基础,介绍了机器学习的概念、数学基础、思想方法和简单的机器学习算法;第二部分为参数化模型,讲解线性模型、神经网络等算法;第三部分为非参数化模型,主要讨论支持向量机和决策树模型及其变种;第四部分为无监督模型,涉及聚类、降维、概率图模型等多个方面。本书将机器学习理论和实践相结合,以大量示例和代码带领读者走进机器学习的世界,让读者对机器学习的研究内容、基本原理有基本认识,为后续进一步涉足深度学习打下基础。 本书适合对机器学习感兴趣的专业技术人员和研究人员阅读,同时适合作为人工智能相关专业机器学习课程的教材。
本书对人工智能和教育的融合与应用进行了探讨和分析,以期为教育的变革与创新发挥力量。本书共包括五章内容。第一章对人工智能的基本理论及其对教育的影响和挑战进行了概述;第二章探讨了人工智能时代教育行动的五个方向,分别是养成信息化的思维、发挥信息处理天赋、提升信息处理能力、提高信息处理效率以及适应信息更新速度;第三章是大数据技术在教育中的应用;第四章是机器学习技术在教育中的应用;第五章是 VR技术在教育中的应用。本书可供教育工作者参考。
本书是微软推出的 AI for Beginners 系列课程的中文版,专门为希望进入 AI 领域的初学者设计。本书提供为期 12 周、共24 堂课的系统学习路径,每堂课配有 Jupyter Notebook 实践笔记本,附带测验与练习,中文版还在 Gitee 上托管了课程相关的 Notebook,便于读者在实践中掌握人工智能的核心概念和应用。 书中涵盖如下内容:AI 历史与发展,探索人工智能从符号到深度学习的演变;神经网络与深度学习,使用 TensorFlow 和 PyTorch 框架讲解神经网络的基本原理及应用;计算机视觉与自然语言处理,学习图像识别和文本分析技术;其他 AI 技术,如遗传算法和多智能体系统等。 本书适合 AI 爱好者、初学者,以及相关专业的学生、老师阅读,不需要复杂数学背景即可轻松入门,通过实战项目提升操作能力。
本书系统阐述分布式机器学习的理论、算法、和实践。
《MATLAB智能算法30个案例分析(第2版)》是作者多年从事算法研究的经验总结.书中所有案例均应国内各大MATLAB技术论坛网友的切身需求而精心设计,其中不少案例所涉及的内容和求解方法在国内现已出版的 MATLAB书籍中鲜有介绍. 《MATLAB智能算法30个案例分析(第2版)》采用案例形式,以智能算法为主线,讲解了遗传算法、免疫算法、退火算法、粒子群算法、鱼群算法、蚁群算法和神经网络算法等Z常用的智能算法的MATLAB实现.本书共给出30个案例,每个案例都是一个使用智能算法解决问题的具体实例,所有案例均由理论讲解、案例背景、MATLAB程序实现和扩展阅读四个部分组成,并配有完整的程序源码和讲解视频,使读者在掌握算法的同时,也可以学习到作者们多年积累的编程经验与技巧,从而快速提高使用算法求解实际问题的能力. 《MATLAB智能算法30个案例分析
机器学习系统既复杂又独特。复杂是因为它们由许多不同的组件组成,并涉及许多不同的领域。之所以说独特,是因为它们依赖于数据,不同用例之间的数据差异很大。在本书中,您将学习一种整体的方法来设计可靠、可伸缩、可维护的ML系统,并能适应不断变化的环境和业务需求。 作者Chip Huyen是Claypot AI的联合创始人,她考虑了每个设计决策 比如如何处理和创建训练数据,使用哪些功能,多久再训练一次模型,以及监控什么 在它如何帮助整个系统实现其目标的背景下。本书中的迭代框架使用了大量参考文献支持的实际案例研究。
本书深入探讨了AI(人工智能)如何革新软件开发领域,从AI辅助编程的演变、优势与挑战到具体的工具与技术实现,为开发者打开了一个全新的世界。全书共10章,第1章介绍了编程的历史演变和生成式AI的崛起;第2章深入技术细节,解释了AI辅助编程工具的主要功能和工作原理;第3章讨论了提示工程的重要性,以及如何与AI工具进行有效沟通;第4章和第5章通过GitHub Copilot和其他AI编程工具的案例,展示了AI在实际开发中的应用;第6章扩展到通用大语言模型,如ChatGPT和GPT-4,探讨了它们在日常任务处理中的应用;第7章和第8章覆盖了软件开发的早期阶段和代码编写过程,展示了AI如何辅助决策、提高学习效率和代码质量;第9章讨论了调试、测试和部署过程中AI的作用;第10章总结了AI辅助编程的一些启示,包括学习曲线、优势、不足及对未来工作的影响。 本书适合软件
通过一系列的技术突破,深度学习推动了整个机器学习领域的发展。现在,即使是对这项技术几乎一无所知的程序员也可以使用简单、高效的工具来实现具备数据学习能力的程序。这本畅销书采用具体示例、小化理论和生产就绪的Python框架(Scikit-Learn、Keras和TensorFlow)来帮助你直观地理解构建智能系统的概念和工具。 在更新的第3版中,作者Aur lien G ron探究了一系列技术,从简单的线性回归开始,逐步推进到深度神经网络。书中的大量代码示例和练习有助于你学以致用。你需要具备一定的编程经验。
脑机接口研究致力于在人类大脑与外部设备之间建立起连接通路,架设起生物智能和人工智能之间的桥梁。认知科学建立了研究认知(Cognition)和智力(Intelligence)的基本概念和科学方法论,为脑机接口对大脑的工作状态及认知活动的解读提供了理论基础。 本书从认知科学理论、探索脑认知活动的技术手段、脑机接口的代表性技术及其前沿应用四个方面系统介绍脑机接口领域的研究成果。全书内容主要来源于创作组成员多年来在认知科学和脑机接口研究领域的知识积累,不少章节内容直接来自于作者在这些领域的科研成果。创作组成员都是国内认知科学与脑机接口领域的学者,对书中的技术论述力图做到深入浅出、通俗易懂、独立完整。 本书适用于具有一般大学理工科背景的读者,可作为科学技术人员了解认知科学和脑机接口研究领域的参考书,也可作为高等院校面向
本书旨在成为大模型在各行各业落地应用的 百科全书 ,专为对大模型感兴趣的从业者和企业管理者量身打造。本书结合了实地调研和多元视角,不仅对大模型进行了技术分析,还从商业、产品、行业等多个角度进行了应用探讨。全书共5章:第 1 章介绍了大模型的训练过程和核心技术;第 2 章分析了大模型对软件行业的影响,通过具体案例展示了软件公司如何适应大模型需求;第 3、4 章分别从产品和行业角度出发,讨论了大模型如何改变产品升级流程和工作流程,以及它对各行各业的具体影响;第 5 章展望了大模型的未来,预测了它将如何改变我们的世界。本书由互联网企业的大模型产品经理、公有云服务的战略规划专家、活跃于中美两国的大模型投资者和从业者,以及专注于行业应用的大模型创业公司共同参与创作。本书将为从业者提供如何选择合适的大模型
本书基于创客教育、STEAM 以及 PBL 教学方式的理念编写,将三维设计、3D打印等数字技能的教学与趣味性的元素相结合,通过四大主题(沙滩小院、火车站、游乐园和星宿战争),详细介绍了利用 3D 打印技术完成从模型设计到制作的全过程。有趣而富有创意的设计主题能激发读者的兴趣,开拓创新思维。此外本书案例配有视频教学,读者通过视频讲解,可以快速掌握 3D 打印设计与制作的相关知识和技巧。本书可供 3D 打印爱好者、青少年及创客教学机构的学生和教师阅读。
《机器学习/计算机科学丛书》展示了机器学习中核心的算法和理论,并阐明了算法的运行过程。《机器学习/计算机科学丛书》综合了许多的研究成果,例如统计学、人工智能、哲学、信息论、生物学、认知科学、计算复杂性和控制论等,并以此来理解问题的背景、算法和其中的隐含假定。《机器学习/计算机科学丛书》可作为计算机专业本科生、研究生教材,也可作为相关领域研究人员、教师的参考书。
随着ChatGPT掀起了新一轮人工智能浪潮,AIGC(artificial intelligence generated content)逐渐成为焦点,它不仅使科技更深地融入人们的日常生活,也极大地提升了各专业领域的工作效率。为了帮助读者快速入门并系统地掌握AIGC的知识,我们特组织编写了本书。 全书共分14章,其中,第1章介绍了人工智能的发展、应用与历史进程,以及AIGC的概念与应用;第2~6章和第14章分别从文本生成(ChatGPT)、图像创意(Midjourney和Stable Diffusion)、音频应用(Suno、Google Dialogflow)和视频生成(Runway、Stable Video Diffusion、ComfyUI)等技术层面进行理论剖析,为后续在各领域的应用实践奠定坚实基础;第7~13章分别从视觉插画设计、产品与电商设计、动漫设计、室内设计、建筑与环境设计、服装设计、游戏设计等多个应用场景出发,以提示词编写、绘画技巧、图片生成、参数描述、模型训练等为学
本书以介绍机器学习中的优化算法为主要内容,以当前机器学习会议的热门话题加速算法为主线,涵盖机器学习中常用的凸优化、非凸优化,以及随机优化和分布式优化。
在过去的几年,AI获得了令人惊讶的新语言能力。在深度学习快速发展的推动下,语言AI系统比以往任何时候都能更好地编写和理解文本。这一趋势正在催生新功能、新产品,甚至新的行业。通过本书的可视化教育方式,读者将学习到现在使用这些功能所需的实用工具和概念。 你将了解如何将预训练的大语言模型用于文案撰写和摘要生成等应用场景,创建超越关键字匹配的语义搜索系统,以及使用现有库和预训练的模型进行文本分类、搜索和聚类。