本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也可
本书是* 高等教育面向21世纪教学内容和课程体系改革计划 和* 理科基础人才培养基地创建优秀名牌课程数学分析 项目的成果,是面向21世纪课程教材。本书以复旦大学数学科学学院30多年中陆续出版的《数学分析》为基础,为适应数学教学改革的需要而编写的。作者结合了多年来教学实践的经验体会,从体系、内容、观点、方法和处理上,对教材作了有益的改革。本次修订适当补充了数字资源。 本书分上、下两册出版。 上册内容包括:集合与映射、数列极限、函数极限与连续函数、微分、微分中值定理及其应用、不定积分、定积分、反常积分八章。 下册内容包括:数项级数、函数项级数、Euclid空间上的拓扑、多元函数的微分学、重积分、曲线积分与曲面积分、含参变量积分、Fourier级数八章。 本书可以作为高等学校数学类专业数学分析课程的教科书,也
本书是 十二五 普通高等教育本科*规划教材,普通高等教育十一五*规划教材和面向21世纪课程教材。内容包括数项级数、函数列与函数项级数、幂级数、傅里叶级数、多元函数的极限与连续、多元函数微分学、隐函数定理及其应用、含参量积分、曲线积分、重积分、曲面积分、向量函数的微分学等。本次修订是在第四版的基础上对一些内容进行适当调整,使教材逻辑性更合理,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。本书可作为高等学校数学和其它相关专业的教材使用。
本书是 十二五 普通高等教育本科*规划教材。内容包括实数集与函数、数列极限、函数极限、函数的连续性、导数和微分、微分中值定理及其应用、 实数的完备性、不定积分、定积分、定积分的应用、反常积分,附录为微积分学简史、实数理论和不定积分表。 本次修订是在第四版的基础上对一些内容进行适当调整,使该书逻辑性更合理些,并适当补充数字资源。第五版仍旧保持前四版 内容选取适当,深入浅出,易教易学,可读性强 的特点。 本书可作为高等学校数学和其它相关专业的教材使用。
本书在保持第7版逻辑性强、语言流畅、易于自学、与时俱进等特色的基础上,对各篇章内容进行了调整和更新。全书共分4篇13章,*篇水分和矿质营养,内容包括植物的水分生理和矿质营养;第二篇物质代谢和能量转换,内容包括植物的光合作用、呼吸作用、植物同化物运输和次生代谢产物;第三篇植物的信号转导,内容有细胞信号转导、植物生长物质、植物光形态建成;第四篇植物的生长和发育,内容有植物的生长生理、植物的生殖生理、植物的成熟和衰老生理、植物对胁迫的应答与适应。与书一体化设计的数字课程内容有:术语解释、重要事件、知识拓展、专题讲座、网上自测、主题讨论、参考文献等。
本书是作者多年在复旦大学讲授“数学分析原理”课程的讲义基础上编写而成的。全书共7章,内容包括:分析基础、实数系基本定理,极限与连续,微分,积分,级数,多元函数微积分,反常积分和含参变量积分。教材注重思想性,在内容上尽量做到融会贯通,突出理论的严密性,同时每章都精选了例题与习题。
本书共九章,包括绪论、滴定分析法概述、分析化学中的误差与数据处理、酸碱滴定法、络合滴定法、氧化还原滴定法、重量分析法和沉淀滴定法、分光光度法、分析化学中常用的分离和富集方法。每章包括三部分内容:内容要点,依据教学大纲,简要阐述各章的重点、难点及需要掌握的知识点;典型例题,选择与重要知识点相关的典型例题进行讲解,强调典型性和实用性;精选试题及其解答,针对每章需要掌握的知识点精选相应的试题,试题中包含基本题和提高题,内容安排由浅入深,每个题目均有详细解答。书后的五套综合练习题是从吉林大学历年期末考试和硕士研究生入学考试题目中精选,并配有相应解答。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
《费曼物理学讲义补编》是对著名物理学教材《费曼物理学讲义》的补充。通过马修 桑兹的回忆以及对理查德 费曼、罗伯特 莱顿和罗丘斯 沃格特的采访,本书生动地呈现了《费曼物理学讲义》的成书历程以及加州理工学院的那段岁月。本书还收录了《费曼物理学讲义》的遗珠篇章 费曼在加州理工学院讲解过,但由于当时讲义资料遗失而未收录进《费曼物理学讲义》的章节。为了对讲义内容有更透彻的理解,书后提供了精彩的习题。
本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
空间 和 时间 到底是什么? 物质的本原不是点,而是弦? 黑洞、高维度空间应该如何解释? 超弦理论 是继牛顿力学、爱因斯坦相对论之后,时空概念的 第三次革命 。 超弦理论 统一了引力理论与量子力学的矛盾,超越了 弦理论 的局限,解释 标准模型 中 费米子 与包括 上帝粒子 的 玻色子 的振动形态。本书中,大栗教授以通俗、风趣的语言讲解了量子物理基础、 弦理论 到 超弦理论 的新发展、 超弦理论 的理论原理及证明,并在 超弦理论 下重新思考与探究了时空概念。
《近代科学的建构》是一部科学史经典,通过两大主题的互动,简明扼要地叙述和分析了17世纪科学革命:柏拉图主义-毕达哥拉斯主义传统以几何方式来看待自然,确信宇宙是按照数学秩序原理建构起来的;而机械论哲学则设想自然是一部巨大的机器,并试图解释现象背后所隐藏的机制。科学革命的完全实现要求解决这两种主导潮流之间的张力。
本书从分析化验工作的特点出发,注重实践与理论的应用,较为详细地介绍了分析化验人员应具备的基本技能与基本知识,是一本对分析化验人员学习和实践都具有指导意义的***参考书。 本书共分为八章,涉及的内容有分析天平的使用与维护、化验室常用的器皿与器材、化验室用水的制备与检验方法、化验室各种溶液的配制与计算、化学分析操作、实验基本知识与基础理论(包括酸碱、配位、氧化还原、沉淀滴定、沉淀分析和重量分析)、定量分析中的误差和数据处理、常用物理常数的测定、化验室安全等,是化验人员***的知识和技能。书末附有常用酸、碱、盐类和其他化学试剂的性质和常用的有关数据表,以方便读者查阅。 本书内容深入浅出,通俗易懂,具体实用。可供生产企业、科研单位从事分析化验工作的人员参考和阅读,也可供高等学校相
《有机化学实验》内容分六部分:1.化学合成实验的一般知识;2.基本实验操作、鉴定、分离提纯方法,列入10个基本单元操作实验;3.基础实验,按照化合物的分类进行实验项目的设置,列入了39个实验,涉及有机化学中的典型反应和一些常用反应类型;4.绿色合成实验,介绍绿色合成化学概念,列入6个绿色合成实验;5.多步骤化学实验,列入12个多步化学实验,涉及前面的各种单元操作;6.微波辐射有机合成,列入4个基本有机合成实验。书末附有溶剂的干燥方法、某些溶剂的精制和常用有机溶剂的纯化方法。书后附送实验报告。《有机化学实验》既可作为化学、化工、材料、生物、医学等相关专业的本科有机化学实验的教材用书,也可作为相关技术人员及研究生的实验参考书。
变分学是数学分析的一个重要组成部分,是一门与其他数学分支密切联系、并有广泛应用的数学学科。近几十年来,变分学不论是在理论上还是在应用中都有了很大发展,与数学其他分支的联系也更加紧密,已经成为大学数学教育不可缺少的部分。 《变分学讲义》是作者在北京大学为高年级本科生和低年级研究生开设“变分学”课程所用的讲义。全书共二十讲,分为三大部分:部分(一到八讲)是经典变分学的基本内容,第二部分(九到十四讲)重点介绍直接方法及其理论基础,第三部分(十五到二十讲)是专题选讲。其材料的选取,内容的编排,问题与概念的表述,以及证明的分析与讲解均极具特色。 《变分学讲义》适用于数学及相关专业的本科生、研究生、教师以及研究人员,也可供工科、经济学、管理学等专业的教师和学生使用参考。
本书是前苏联著名数学家为普及数学知识撰写的一部名著,用及其通俗的语言介绍了现代数学各个分支的内容,历史发展及其在自然科学和工程技术中的应用。本书内容精炼,由浅入深,只要具备高中数学知识就可阅读。全书共20章,分三卷出版。每一章介绍数学的一个分支,第一卷的内容包括数学概观、数学分析、解析几何和代数。