《挑战思维极限:勾股定理的365种证明》主要介绍了勾股定理的 365 种证明方法, 并按证法的 类型进行归纳、整理和总结, 让读者有一个全面而系统的了解.书中大多数证法用到的知识不 过初中几何的教学范围, 许多证法思路巧妙, 别具一格,对提高读者的几何素养大有裨益. 本书可以作为广大中学师生和数学爱好者的参考读物.
《数学的历程:从泰勒斯到博弈论》是一部数学启蒙和通识教育佳作,深受数学爱好者和数学老师喜爱。从历史的角度,勾勒出一条数学发展的脉络,阐述了重要数学思想概念产生的背景原因和来龙去脉,剖析数学定律的底层逻辑,学习数学家的思维方法。探索了有趣的数学难题以及古代中国的算学、数学悖论、奇妙的 、囚徒困境等话题,生动讲述了数学大师的逸闻趣事,让读者感受深藏的数学之美、思维的乐趣,以及科学家精神。全书实例丰富、解释通俗、表述流畅、寓意深刻。阅读它不需要太高深的数学知识,但无论是数学高手还是初学者都能从中获得乐趣和启发,开阔眼界,增长见识,从而更好地把握数学的特征与规律。
在他十四岁时,伊恩 斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣 事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。除去可以了解各种有趣的数学知识和八卦,你还可以亲自参与到数学当中,亲自制作数学游戏,试着解决数学谜题。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2010年版的译文进行了全面整理提升。斯图尔
《不等式的秘密(卷第2版)》部分(1 8章)的内容主要介绍了常用的不等式,如AM GM不等式、Cauchy-Schwarz不等式、Holder不等式等,并给出了这些不等式新颖、有趣的证明。通过大量的例子介绍了初等不等式的证明方法和技巧,如Cauchy求反技术、Chebyshev关联技术、平衡系数法、凸函数法和导数等方法。1部分(第9章)是作者收集了近百个不等式的典型问题,内容丰富、解答新颖,富有启发性。 本书适合高中以上文化程度的学生、教师、不等式爱好者参考使用,是一本数学奥林匹克有价值的参考资料。
本书包含十年高考数学试卷中的典型数学思想方法研究与十年高考数学试卷中的典型题的具体解题方法研究两章和三个附录,内容包括数形结合思想方法、分类与整合思想方法、化归与转化思想方法等. 本书可供高中学生复习备考时使用,也可作为高中数学教师教学的参考资料.
本书是前苏联著名数学家为普及数学知识撰写的一部名著,用及其通俗的语言介绍了现代数学各个分支的内容,历史发展及其在自然科学和工程技术中的应用。本书内容精炼,由浅入深,只要具备高中数学知识就可阅读。全书共20章,分三卷出版。每一章介绍数学的一个分支,第一卷的内容包括数学概观、数学分析、解析几何和代数。
图论是组合数学中一个重要而且发展迅速的主题,不仅在数学研究中占有重要的地位,在数学奥林匹克竞赛中也是如此。本书介绍了图论的相关知识,全书共分十个章节,分别为:引言、欧拉回路和哈密顿圈、树、色数、平面图、二部图中的匹配、极图理论、拉姆塞理论、有向图、无限图。每一章节中都配有相应的例题及习题,并且给出了详细的解答,以供读者更好地理解相应的内容。本书适合高等院校师生及数学爱好者研读。
本书是前苏联著名数学家为普及数学而撰写的一部名著,用极其通俗的语言介绍了数学各个分支的主要内容,历史发展及其在自然科学和工程技术中的应用。本书内容精练,由浅入深,只要具备高中数学知识、就能阅读。全书共20章,分三卷出版。每一章介绍一个分支,本卷是第二卷,内容包括:微分方程、变分法、复变函数、数论、概率论、函数逼近论、计算方法和计算机科学等内容。
本书是前苏联著名数学家为普及数学知识撰写的一部名著,用极其通俗的语言介绍了现代数学各个分支的主要内容。历史发展及其在自然科学和工程技术中的应用。本书内容精练深入浅出,只要具备高中的数学知识就能阅读。全书共20章,分三卷出版。每一章介绍一个数学支,本卷是第三卷,内容包括实变函数论、线性代数、抽象空间、拓扑学、泛函分析、群及其他代数系统。
《微积分的历程:从牛顿到勒贝格》介绍了十多位数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 br 《微积分的历程:从牛顿到勒贝格》兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
在他十四岁时,伊恩 斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣 事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。此外,斯图尔特教授还记录下了海盗红胡子船长和考古学家科罗拉多 史密斯的寻宝冒险。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2012年版的译文进行了全面整理提升。斯图尔特教授五十多年收藏的更
在他十四岁时,伊恩 斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣 事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。此外,斯图尔特教授还记录下了居住在贝克街222B的福洛克 夏尔摩斯及其同伴约翰 何生医生破解众多数学疑案的探案冒险。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。斯图尔特教授五十多年收藏的更多精选可参见《
从基本的矿物、植物、动物以及人类到螺旋、旋涡、芽苞等具有复杂形状的事物,本书以 500 多张彩色图片展现了各种事物的几何学特性。作者通过对大自然*简单的观察以及*细腻复杂的测量等手段,意欲告诉我们可以从身边的任何事物中找到几何学的身影;他还利用射影几何学证明了,大自然中所有奇奇怪怪的体态其实都是依据*基本的几何学原理 制造 而成的,而这些原理之间的重要差异则造就了我们宇宙中如此纷繁多样的形状。
本书从一道北京大学金秋营数学试题的解法谈起,详细介绍了伽罗瓦理论的相关知识.全书共分为十一章,主要介绍了伽罗瓦小传、群是什么、群的重要性质、一个方程式的群、伽罗瓦的鉴定、用直尺与圆规的作图、伽罗瓦的鉴定为什么是对的、可计算域和伽罗瓦理论等内容.本书适合数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读.
本书主要讲述了数学归纳法在数学竞赛解题中的应用.全书共分为10章,前8章涉及函数与函数方程、不等式、数列与递归关系、数论和组合数学等方面的问题,所汇集的问题均给出了利用数学归纳法解题的翔实解法. 本书适合参加数学竞赛的学生、奥数教练及数学爱好者参考使用.
本书是《数学建模算法与应用(第3版)》的配套书籍。本书给出了《数学建模算法与应用(第3版)》中全部习题的解答及程序设计,另外针对选修课的教学内容,又给出一些补充习题及解答。本书的程序来自于教学实践,有许多经验心得体现在编程的技巧中。这些技巧不仅实用,也很有特色。书中提供了全部习题的程序,读者可以将这些程序直接作为工具箱来使用。
本书为线性代数入门的科普读物,书中以 如何理解线性代数 如何理解矩阵的基础概念与计算方法 为线索,用漫画故事生动呈现了线性代数初学者的学习历程。作者从学习者的角度出发,结合生活例子讲解了线性代数中的基础概念及实际应用意义,解答了初学者在的常见困惑。本书讲解直观、通俗,适合作为正式学习线性代数前的入门读本,也适合作为了解线性代数原理的科普读物。
序言 不等式大量存在于数学的一切领域之中.本书的目的是呈现不等式理论中的一些基本的技巧.我们从 Mathematical reflections丛书,以及解题艺术网站, Gazeta matematica中精选出了不少问题.本书中的许多问题都体现了作者的特色。 在*章中,读者将会遇到一些经典的不等式,其中包括幂平均和AMGM不等式,Cauchy- Schwarz不等式, Holder不等式,排序和Cheyshev不等式, Schur不等式, Jensen不等式等,这些不等式我们都给出了证明,并列举一个或几个例子,还给出它们有趣的、容易接受的解答。本书内容旨在拓展读者的视野:我们的读者包括高中的学生和教师、大学生,以及一切对数学怀有热情的人士。 在第二章中,我们致力于研究一些问题,这些问题分为入门题和提高题.每一节中的不等式都按照变量的个数:一个、两个、三个、四个和多个变量排序.每一个问题至少有一个完整的解答,很多问题
本书从2022年一道高考数学压轴题的解法谈起,引出了数值计算中的帕德逼近。全书共分14章,主要介绍了什么是Pad 逼近、经典Pad 逼近概述、Pad 逼近与Taylor展开的比较、函数值Pad 逼近方法及其在积分方程中的应用等内容。通过对本书的学习,读者可以充分理解并掌握有关Pad 逼近的问题,并能更好地将其应用到相关的研究理论中。 本书适合数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读。
本书介绍了平面几何的相关知识及问题.共分5章,主要包括直线、圆、相似、正多边形与圆周、面积的相关内容,同时收录了相应的习题.本书按照知识点分类,希望通过对习题的实践训练,可以强化学生对平面几何基础知识的掌握.激发读者的兴趣。启迪思维。提高解题能力. 本书适合中学师生、数学相关专业学生及几何爱好者参考使用.
近代数学本质上可以说是变量数学,而变量数学的个里程碑就是解析几何的诞生.17 世纪前,几何与代数是彼此独立的两个分支,解析几何的建立次真正实现了几何与代数方法的结合,使得数与形统一起来,这是数学发展史上的一次重大突破,不仅具有划时代的意义,还为数学思想的发展开辟了新的天地.本书以广泛概貌代表主要对象,将解析几何从早期原始阶段到19世纪"黄金时代"的历史作为一个整体进行综合考查,深入研究解析几何思想产生的历史背景与发展历程.本书为解析几何学发展历史的研究提供了一个新的视角与参考. 本书适合数学专业学生及数学爱好者参考阅读.
本书首先介绍了一道数学竞赛题的解法,其次详细介绍了最佳逼近多项式、多元函数的三角多项式逼近、在具有基的Banach空间中的最佳逼近问题、变形的L1有理逼近等相关知识,在附录中还介绍了第十一届全国大学生数学竞赛决赛的情况. 本书适合高等院校师生和数学爱好者参考阅读。