《费马大定理:一个困惑了世间智者358年的谜》是关于一个困惑了世间智者358年的谜题的故事。书中既有振奋人心的故事讲述方式,也有引人入胜的科学发现的历史。西蒙 辛格讲述了怀尔斯经过数年秘密辛苦的工作,终于解决了挑战性的数学问题的艰辛旅程。
《古今数学思想》是数学史的经典名著,初版以来其影响力一直长盛不衰。著作可谓博大精深,洋洋百万余言,阐述了从古代直到20世纪头几十年中的数学创造和发展,特别着重于主流数学的工作。大量一手资料的旁征博引,非常全面地提及各个历史时期的数学家特别是知名数学家的贡献,是《古今数学思想》的一大特色。《古今数学思想》所关心的还有:对数学本身的看法,不同时期中这种看法的改变,以及数学家对于他们自己成就的理解。本书体现了作者的深厚功力。
9787115435590 普林斯顿微积分读本(修订版) 99.00 9787115543776 普林斯顿概率论读本 139.00 9787115543844 普林斯顿数学分析读本 69.00 《普林斯顿微积分读本(修订版)》 本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。 《普林斯顿概率论读本》 本书讲解概率论的基础内容, 包括组合分析、概率论公理、条件概率、离散型随机变量、 连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等, 内容丰富, 通俗易懂, 并配有丰富的例子和大量习题, 涉及物理学、生物学、化学、遗传学、博弈论、经济学等多
《高观点下的初等数学》是具有世界影响的数学教育经典,由菲利克斯 克莱因根据自己在哥廷根大学为中学数学教师及学生开设的讲座所撰写,书中充满了他对数学教育的洞见,生动地展示了一流大师的风采。本书出版后被译成多种文字,影响至今不衰, 对我国数学教育工作者和数学研习者很有启发。 《高观点下的初等数学》共分为三卷 *卷 算术、代数、分析 ,第二卷 几何 ,第三卷 精确数学与近似数学 。
《数学的历程:从泰勒斯到博弈论》是一部数学启蒙和通识教育佳作,深受数学爱好者和数学老师喜爱。从历史的角度,勾勒出一条数学发展的脉络,阐述了重要数学思想概念产生的背景原因和来龙去脉,剖析数学定律的底层逻辑,学习数学家的思维方法。探索了有趣的数学难题以及古代中国的算学、数学悖论、奇妙的 、囚徒困境等话题,生动讲述了数学大师的逸闻趣事,让读者感受深藏的数学之美、思维的乐趣,以及科学家精神。全书实例丰富、解释通俗、表述流畅、寓意深刻。阅读它不需要太高深的数学知识,但无论是数学高手还是初学者都能从中获得乐趣和启发,开阔眼界,增长见识,从而更好地把握数学的特征与规律。
9787115429384 奇妙数学史 从早期的数字概念到混沌理论 49.00 9787115479945 奇妙数学史 数字与生活 49.00 9787115522733 奇妙数学史 从代数到微积分 59.00 《奇妙数学史 从早期的数字概念到混沌理论》 本书从历史的视角,向我们娓娓道来数学迷人的发展史,从古老的数学起源到现代的重大数学突破,展示了数学这一学科是如何从古巴比伦人、古希腊人和古埃及人的伟大发现,中世纪欧洲学者的发现,文艺复兴时期到现代的科学进步一步一步发展起来的。本书还介绍了那些非常重要的数学概念:从简单的算数、代数、三角、几何到微积分、无限和混沌理论。 现代数学看上去复杂深奥得可怕,但阅读本书并不需要深厚的数学知识。我们在日常生活中常常下意识地运用着数学,我们都是 民间数学家 。带上好奇心,踏上这一段让数学变得触手可及而又好玩有趣的奇幻旅程,你就会明
本书共有三角形、几何变换,三角形、圆,四边形、圆,多边形、圆,完全四边形,以及值,作图,轨迹,平面闭折线,圆的推广十个专题.对平面几何中的 500 余颗璀璨夺目的珍珠进行了系统地,全方位地介绍,其中也包括了近年来我国广大初等几何研究者的丰硕成果, 本书中的1 500 余条定理可以广阔地拓展读者的视野,极大地丰厚读者的几何知识,可以多途径地引领数学爱好者进行平面几何学的奇异旅游,欣赏平面几何中的精巧、深刻、迷人、有趣的历史名题及成果, 该书适合于广大数学爱好者及初、高中数学竞赛选手,初、高中数学教师和数学奥林匹克教练员使用,也可作为高等师范院校数学专业开设"竞赛数学""中学几何研究"等课程的教学参考书.
《挑战思维极限:勾股定理的365种证明》主要介绍了勾股定理的 365 种证明方法, 并按证法的 类型进行归纳、整理和总结, 让读者有一个全面而系统的了解.书中大多数证法用到的知识不 过初中几何的教学范围, 许多证法思路巧妙, 别具一格,对提高读者的几何素养大有裨益. 本书可以作为广大中学师生和数学爱好者的参考读物.
1859年8月,没什么名气的32岁数学家黎曼(Bernhard Riemann)向柏林科学院提交了一篇论文,题为 论小于一个给定值的素数的个数 。在这篇论文的中间部分,黎曼作了备注 一个猜测,一个 假设。他向那天被召集来审查论文的数学家们抛出的这个问题,结果在随后的年代里给无数的学者产生了近乎残酷的压力。时至今日,在经历了150年的认真研究 和极力探索后,这个问题仍然悬而未决。这个假设成立还是不成立?已经越来越清楚,黎曼假设掌握着打开各种科学和数学研究之大门的钥匙,但它的解答仍诱人地悬在那里,正好让我们伸手够不着。依赖于素数特性的现代密码编制 术和破译术,其根基就在于这个假设。在1970年代的一系列非凡性进展中,显示出甚至原子物理学也以尚未被完全了解的方式与这个奇怪难题扯上了关系。在《素数之恋》中,极其明晰的数学阐释文
上海交通大学钱学森研究中心编*的《智慧的钥匙--钱学森论系统科学》是一本以公务员和大学师生为主要读者对象的钱学森 论系统科学 的原*精选。初版于2005年4月,此次再版,增加了若干篇文章。 从事力学、导弹、航空、航天的研究和实践,这是人们 熟知 的钱学森。但是在1979年,钱学森说他研究力学已是 从前 的事了。钱学森又说: 我们完全可以建立起一个科学体系 去解决我们中国社会主义建设中的问题 。阅读本书,我们走进了钱学森晚年的学术世界,再次感受钱学森开创的 系统科学 在新时代背景下的应用价值和现实意义。
《不等式的秘密(卷第2版)》部分(1 8章)的内容主要介绍了常用的不等式,如AM GM不等式、Cauchy-Schwarz不等式、Holder不等式等,并给出了这些不等式新颖、有趣的证明。通过大量的例子介绍了初等不等式的证明方法和技巧,如Cauchy求反技术、Chebyshev关联技术、平衡系数法、凸函数法和导数等方法。1部分(第9章)是作者收集了近百个不等式的典型问题,内容丰富、解答新颖,富有启发性。 本书适合高中以上文化程度的学生、教师、不等式爱好者参考使用,是一本数学奥林匹克有价值的参考资料。
《2的平方根:关于一个数与一个数列的对话》以师生对话的形式展开讨论。博学的老师引导学生一步步逐渐熟悉数学推理,让学生体会数的概念远比初能想见的微妙得多。年轻的学生被2的平方根这个神奇的无理数所吸引,踏上了一段奇特的数学之旅,随后他又遇见了令他着迷的数列。强烈的好奇心驱使他迫不及待地投入工作,去了解这个神奇的数,了解这个数与数列之间的联系。本书所使用的代数方法相对简单,但非常巧妙,让读者体会到寓教于乐的态度和精神。
本书包含十年高考数学试卷中的典型数学思想方法研究与十年高考数学试卷中的典型题的具体解题方法研究两章和三个附录,内容包括数形结合思想方法、分类与整合思想方法、化归与转化思想方法等. 本书可供高中学生复习备考时使用,也可作为高中数学教师教学的参考资料.
圆作为平面几何的一部分,与其他任何组成部分具有同样的重要性。此外,它还是*一种可以画在球面上的 线 。这使得圆在几何学世界中也许比直线更加无所不在,因为直线在球面几何中是不存在的。本书考察的就是圆在几何学中发挥作用的那些*常见方面。 全书共11章,涉及圆所呈现的种种几何奇观,包括圆的历史、圆的各种关系、圆填充问题、尺规作图问题、切圆探究、摆线等,以及艺术作品和建筑中的圆,还用一整章讲述了球面几何学。
《自然哲学的数学原理》是牛顿所写的旷世巨著,是他 个人智慧的伟大结晶 。牛顿不但总结出了力学的基本定律,而且还发现了证明这些定律的数学方法,奠定了数学成为描述宇宙运动的语言的基础。在《自然哲学的数学原理》之后,人类在自然科学中的伟大成就层出不穷,但这些成就无一不与这部非凡的著作息息相关。牛顿提供了科学思维体系的样板。 《自然哲学的数学原理》标志着经典力学体系的建立,是人类科学史乃至整个人类文明史中的不朽巨著。 《自然哲学的数学原理》不仅影响着自它面世后的300年里的自然科学领域,而且对人类的宇宙观也产生了深刻的影响。
《真希望几何可以这样学》是日本著名数学教育家星田直彦所著的数学科普经典,分为 基础篇 和 提高篇 ,以小学高年级和初中阶段的学习内容为主,深入浅出地讲解了几何知识。本书为基础篇,分为平面几何基础、立体几何基础和打开证明之门三个章节。本书较为重视几何语言,在进入具体图形的学习之前,用大量篇幅详细讲解了定义、命题、条件、结论、公理、定理、性质等基本概念,有助于读者区分理解。 本书还将数学中的知识点用有趣的插画小故事表现出来,富有趣味性。不管是对几何略显懵懂的中小学生,还是想要重温几何基础的成年人,抑或是有教学需要的老师和家长,这本书都会是你的*佳选择,相信你能从中体会到数学的乐趣!
本书为菲尔兹奖、日本学士院奖、日本文化勋章得主,日本数学家广中平?v先生的思想文集。书中以广中平?v先生与 奇点解消问题 的故事为线索,讲述了广中平?v在挑战 奇点消解问题 的过程中,对 数学学习 数学教育 以及 创造性思维 的独到感悟,以及对数学证明与发现的深入思考。另外,本书还收录了广中平?v先生研究生涯中的珍贵访谈、笔记、照片资料,是了解广中平?v先生数学思想以及创造性思维的佳作。
本书源于几位作者任教的加州大学伯克利分校、斯坦福大学等高校开设的相关课程。这些课程紧随大数据时代和金融科技的热点,面向金融工程和计算金融项目的学生。当今,量化交易策略及其相关的统计模型和方法、知识表达、数据分析和算法设计以及信息学的重要性越来越高。在此背景下,本书从多学科角度对于量化交易进行了综合阐述,同时也为学术研究和金融实务搭建了桥梁。 量化交易涉及多个学科,且横跨学术界与业界。几位作者结合他们在多个学科的学术背景和丰富的业界工作经验,在撰写本书过程中综合考虑了不同类型读者的核心需要。本书的目标受众既包含高年级本科生、硕士生等在校学生,也包含有志于学习量化交易领域尖端知识和现代交易实务的交易员、量化分析师以及监管者等。考虑到目标受众的背景和兴趣的差异,本书对于章节进行了特
《从矢量到张量:细说矢量与矢量分析,张量与张量分析》是 高等数学启蒙小丛书 系列中的一本。 张量的概念由 G.Ricci 于19世纪末提出的,研究张量旨在为几何性质和物理规律的表达寻求一种在坐标变换下不变的形式,在相对论中得到广泛应用。它既是物理学概念,又是一个数学的概念,是微分几何研究的一个方向,也是现代机器学习的基础。但是如果直接讲解,读者很难理解。 既有大小又有方向的量(在物理学中称作矢量,在数学中称作向量。) 则相对容易理解,作者以此为起点,分为六个部分,二十个章节,一步步向读者介绍,直至张量。 如:部分从矢量的袋鼠运算讲起,详述矢量的矢量混合积;第二部分,引入矢量三重系;第三部分,先讲解变矢量的微分运算;第四部分,讨论矢量场的线积分与面积分;第五部分,从曲线坐标入手,讨论曲线坐标下的向
图论是组合数学中一个重要而且发展迅速的主题,不仅在数学研究中占有重要的地位,在数学奥林匹克竞赛中也是如此。本书介绍了图论的相关知识,全书共分十个章节,分别为:引言、欧拉回路和哈密顿圈、树、色数、平面图、二部图中的匹配、极图理论、拉姆塞理论、有向图、无限图。每一章节中都配有相应的例题及习题,并且给出了详细的解答,以供读者更好地理解相应的内容。本书适合高等院校师生及数学爱好者研读。