偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
本书*、二、三、四版分别出版于1987年、1993年、2003年和2011年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。 本书可作为高等学校各专业学生数学建模课程的教材和参加数学建模竞赛的辅导材料,以及科技工作者的参考书。
本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
《高等数学解题指南》是理工医农各专业的大学生学习 高等数学 课的辅导教材。两位作者在北京大学从事高等数学教学四十年,具有丰富的教学经验,深知学生的疑难与困惑。他们围绕着该课的基本内容与教学要求,根据学生初学时遇到的难点与易犯的错误,通过精心挑选的典型例题进行分析、讲解与评注,给出归纳和总结,以帮助学生更好地理解 高等数学 课的内容,掌握其基本理论和正确的解题方法与技巧。全书共分13章,内容包括:一元微积分,空间解析几何,多元微积分,无穷级数(包含傅里叶级数)与常微分方程等。在每一节中,设有基本理论内容提要,典型例题的讲解与分析,以及供学生自己做的练习题等部分,书末附有练习题的答案。为了适应不同程度学生的要求,本书还较系统地讲解了适量的综合题和一定难度的例题(以*号标出),这些内
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
本书是作者运用自己的独到的科学见解为全国普通高等学校本科生编写的 “高等代数”教材,内容包括:线性方程组的解法,行列式,数域K上的n维向量空间,矩阵的运算,一元多项式环和n元多项式环,线性空间,线性映射,双线性函数,二次型,具有度量的线性空间等。本书具以下有鲜明的特色:以研究线性空间及其线性映射为主线,科学地安排内容的讲授体系;用数学的思维方式编写教材,使学生既比较容易地学到“高等代数”的基础知识和基本方法,又受到数学思维方式的熏陶和训练,终身受益;编写体例新颖,每节均有“内容精华”“典型例题”“习题”三个栏目。
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
《高等数学解题全攻略(下卷)》从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用。书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。《高等数学解题全攻略(下卷)》是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书以简短的篇幅叙述了线性泛函分析的基础理论。全书共分5章。按章序分别讲解度量空间和赋范空间的拓扑知识与结构性质、有界线性算子和有界线性泛函的基本定理、共轭空间与共轭算子、Hilbert空间的几何学以及线性算子的谱理论。本书注重阐述空间和算子的基本理论,取材既有简洁的一面又有深入的一面,并适当引入了自反空间、一致凸空间等较新的内容,在突出基本理论系统的同时,有选择地叙述了在其他学科分支的应用。
本书着眼素质教育,注重数学内容、思维之间内在的联系,条理、结构、脉络清晰,能培养学生数学思维能力,便于教学与学习。在教材内容选取和讲述上,本着从简单到复杂、从特殊到一般的原则,力求深入浅出,“预、补结合”,难易结合,易教易学,主要内容包括:函数、极限、连续函数、导数与微分、微分中值定理与导数的应用、不定积分、定积分以及定积分的应用。为了增加可读性与趣味性,同时还增加了一些数学思想方法简介和数学家简介,兼顾各个层次民族预科学生学习状况,还分层次提供多种程度的习题。
本书的编写汲取国内外众多优秀教材之长,在透彻研究的基础上,以尽可能简单的方式来呈现微积分知识.本书是课本与网络(手机)相结合的立体教材.网络(手机)支持重点知识讲解、图形演示、习题答案或提示、扩展阅读、讨论等移动学习功能.本套教材分为上、下册,并配有《高等数学教程例题与习题集》.本书是上册,内容包括:函数、极限与连续、导数与微分、微分中值定理及其应用、不定积分、定积分及其应用.本书各节末均配有分层习题,各章末还配有综合习题.书后附录的“研究与参考”,对若干重点问题进行了细致的分析.本书为高等院校理工科类各专业学生的教材,也可作为自学或考研的参考书.
本书是配套高等数学教学使用的学生课后练习的自测题,本书对学生掌握《高等数学》提出了较高要求,可作为对高等数学要求较高的专业的学生使用。
几何是数学学习的基础之一,借助几何学,我们能搭建房屋、丈量土地、观测星空,还能设计滑梯、装饰地板……连一副小小的七巧板都能催生出众多数学成果。本书从建筑、测量、图形游戏等角度讲述了有趣的几何小故事,不仅涉及直线形、圆、非圆曲线、立体几何等基础几何学知识,而且加入了图论、拓扑、组合几何、非欧几何等主题,“扩大”了美妙的几何世界。本书阐释了几何学知识,同时介绍了古今中外关于几何的逸闻趣事,展现了图与形的自然之美。本书尤其适合小学高年级学生和中学生阅读。
《高等数学习题全解与学习指导》分上、下两册。下册内容为向量与空间解析几何,多元函数微分学,多元函数积分学,无穷级数配套习题讲解。书中各章节的主要内容都配有精心选取的例题和习题,着重训练读者对定义与概念的理解、对定理与方法的应变能力,培养读者解决问题的逻辑思维方法和创新能力。
本教材是根据*《高职高专教育高等数学教学课程教学基本要求》结合多年高等数学课程的教学实践而编写的。 本教材的编写坚持以人为本,以学为主,注重创新意识和综合素质培养的指导思想,坚持以应用为目的,以必需够用为度和少而精的原则,在保证科学性的基础上考虑到专升本的要求,注意讲清概念,减少理论证明,注重学生基本运算能力和分析问题、解决问题能力的培养。 本教材突出了与计算机应用的结合,下册专辟“数值计算初步”一章,增加了部分计算方法的内容、计算机解法初步,介绍一些常用算法的框图和程序,使学生能够更好更快的适应科技工作的需要,适应用人单位的需要。
本指导书是为了适应士官教学的需求,在军队院校数学联席会的组织策划下编写而成的。指导书体例新颖,着力概念理解,内容丰富,题型全面。每章分为教学基本要求、释疑解惑、典型题型分析、习题全解、同步测试题等五个模块。撰写了学习概念和计算过程中容易发生的错误,以求加深对概念的理解和计算方法的掌握;介绍了各章可能出现的主要题型及其基本解题方法;为了帮助大家掌握解题方法,对教材中的全部习题都作了解答。 本书是士官大专高等数学的同步教学辅导书,它的使用将对军校士官的数学学习起到积极的促进作用。
数学实验课的宗旨是:在教师指导下以学生在计算机上动手、动眼、动脑为主,通过用数学软件做实验,学习解决实际问题中常用的数学方法,并在此基础上分析、解决经过简化的实际问题,提高学数学与用数学的兴趣、意识和能力。本书通过14个实验介绍数值计算、优化方法和数理统计的基本原理、有效算法及软件实现,并提供若干简化的实际问题,让读者利用学到的数学方法及适合的数学软件在计算机上完成数学建模的全过程。本书适用于学过微积分、线性代数和概率论与数理统计的读者进一步提高利用数学工具和计算机技术分析、解决实际问题的能力。 本书可作为高等院校理工、经管类专业数学实验、数学建模课程的教材或参考书,大学生数学建模竞赛的辅导教材,也可供专业人员学习参考。
《高等数学》根据高等院校理工类本科专业高等数学课程的*教学大纲及考研大纲编写而成,并在第三版的基础上进行了修订和完善,注重数学概念的实际背景与几何直观的引入,强调数学建模的思想和方法,紧密联系实际,服务专业课程,精选了许多实际应用案例并配备了相应的应用习题,增补并调整了部分例题与习题,书中还融入了数学历史与数学建模的教育。 本次升级改版的另一重大特色是:每本教材均配有网络账号,通过它可登录作者团队为用户专门设立的网络学习空间,与来自全国的良师益友进行在线交流与讨论。该空间设置了课程论坛、学习问答、学习软件、教学视频、名师导学、教学博客、科学搜索等功能栏目,并全面支持文字、公式与图形的在线编辑、修改与搜索。 《高等数学》共分上、下两册,《高等数学(上理工类第4版21世纪数
本书是《21世纪高等院校数学规划系列教材》之《高等数学(下册)》。它是根据高等院校理工类本科高等数学课程教学大纲的要求,结合编者多年在数学线积累的实践经验以及对高等数学课程内容的深入研究和透彻理解编写而成的。本书旨在培养学生的数学素质、创新意识以及运用数学工具解决实际问题的能力。全书分上、下两册,下册包含向量代数与空间解析几何、多元函数微分学、重积分、曲线积分与曲面积分以及无穷级数等内容。各节后均配有相应的习题,书末附有参考答案或提示,供读者参考。 本书内容取材适当,逻辑清晰,重点突出,难点分散,通俗易懂,便于自学。每一章的后设置了“综合例题”一节,介绍各种重要的题型,博采众长的解题方法。这对开阔解题思路,激发学习兴趣,提高学生综合应用数学知识的能力将是十分有益的。 本书可作为
本书是以国家*非数学专业数学基础课教学指导分委员会制定的工科类本科的《高等数学》教学大纲为依据,根据北京邮电大学高等数学双语教学组编写的双语高等数学教材而编写的教学辅导书。本书对双语高等数学教材的习题作了全解,对各章的知识要点和学习要求进行了总结,且每章都附有极具针对性的总习题供读者进行自我检测。
无
本书根据高等院校大学文科数学的教学大纲编写而成,并在第二版的基础上进行了修订和完善,注重数学概念的实际背景与几何直观的引入,强调数学的思想并口方法,紧密联系实际,服务专业课程,精选了许多实际应用案例并配备了相应的应用习题,增补并调整了部分例题与习题。 本次升级改版的另一重大特色是:每本教材均配有网络账号,通过它可登录作者团队为用户专门设立的网络学习空间,与来自全国的良师益友进行在线交流和讨论。该空间设置了课程论坛、学习问答、学习软件、教学视频、名师导学、教学博客、科学搜索等功能栏目,并全面支持文字、公式与图形的在线编辑、修改与搜索。 本书内容包括微积分、线性代数以及概率论与数理统计三大部分,其中微积分部分包括函数与极限、一元微分学、一元积分学、微分方程等,线性代数