偏微分方程是数学学科的一个分支,它和其他数学分支均有深刻的联系,而且在自然科学和工程技术中有广泛的应用。本书主要讲述广义函数与Sobolev空间、偏微分方程的一般理论、椭圆型方程的边值问题、双曲型方程或抛物型方程的初值问题与初边值问题、能量方法、半群方法等内容。以此为提高读者的整体数学素质提供合适的材料,也为部分读者进一步学习与研究偏微分方程理论做准备。
本书对高等数学的大部分内容作了简明的、介绍性的论述,全书共分十二章,其中八章分别讨论数论、代数、几何及线性代数、极限、连续性及拓扑学、微分、积分、级数和概率、每章都从基本概念、基本定理开始,一直论述到当前的进展,并附有该学科的历史概况及有关的著名数学家的生平简介,重要参考书。另外还有三章分别讨论数学模型与现实,数学的应用及17世纪的数学史,最后一章讨论数学的社会学、数学的心理学及数学教学。《BR》 本书内容丰富,论述严谨,可使读者了解数学的全貌、现代数学的特点及数学的应用并可提高读者对数学的兴趣。《BR》 本书由胡作玄同志翻译,张燮同志初校,沈永欢同志复校。
《高等数学解题指南》是理工医农各专业的大学生学习 高等数学 课的辅导教材。两位作者在北京大学从事高等数学教学四十年,具有丰富的教学经验,深知学生的疑难与困惑。他们围绕着该课的基本内容与教学要求,根据学生初学时遇到的难点与易犯的错误,通过精心挑选的典型例题进行分析、讲解与评注,给出归纳和总结,以帮助学生更好地理解 高等数学 课的内容,掌握其基本理论和正确的解题方法与技巧。全书共分13章,内容包括:一元微积分,空间解析几何,多元微积分,无穷级数(包含傅里叶级数)与常微分方程等。在每一节中,设有基本理论内容提要,典型例题的讲解与分析,以及供学生自己做的练习题等部分,书末附有练习题的答案。为了适应不同程度学生的要求,本书还较系统地讲解了适量的综合题和一定难度的例题(以*号标出),这些内
本书*、二、三、四版分别出版于1987年、1993年、2003年和2011年。基于作者20多年来从事数学建模教学、组织数学建模竞赛、开设数学实验课程以及编写相关图书的经验,参考国内外数学建模教材和教学单元,第五版在保持前四版基本结构和风格的基础上,进行补充与修订:增加了一些实用性较强、生活气息浓烈、数学推导简化的案例,改写、合并、调整了若干案例和章节,删除了个别案例,并对习题作了相应的修订。 本书可作为高等学校各专业学生数学建模课程的教材和参加数学建模竞赛的辅导材料,以及科技工作者的参考书。
《泛函分析》为普林斯顿分析译丛中的第四册泛函分析,其内容分为8章,第1章介绍Lp空间和Banach空间,第2章过渡到调和分析中的Lp空间,第3章讨论分布:广义函数,第4章讲述Baire纲定理的应用,第5章为概率论基础,第6章介绍Brownian运动,第7章为多复变引论,第8章介绍Fourier分析中的振荡积分,全书展现了泛函分析理论的基本思想,特别强调它与调和分析的联系。 《泛函分析》可作为数学专业高年级本科生或研究生的泛函分析教材,同时也可作为相关科研工作者的参考书。
本书系统介绍了凸分析基础的五个核心部分。①涉及与凸集理论有关的线性子空间、仿射集、超平面、凸包、单纯形、闭包、内部、相对内部、凸集分离和支撑超平面等基本性质和一些重要定理。②涵盖了与凸锥有关的顶点锥、锥包、凸锥包、回收锥、共轭锥(正极锥)、负极锥、法锥与切锥、障碍锥、凸锥分离、多面体、多面锥和多面体集等基本性质和重要定理。③细述了实值(有限值)凸函数、可微凸函数、正常与非正常凸函数、复合凸函数、半连续凸函数、闭凸函数、连续凸函数和Lipschitz连续凸函数、共轭凸函数、支撑凸函数、规范凸函数、严格凸函数、半严格凸函数、显凸函数等性质和定理。④阐述了拟凸函数、半严格拟凸函数、显拟凸函数、伪凸函数、二次可微广义凸函数和广义单调性等广义凸函数的基本理论与性质。⑤讨论了凸函数的微分学基本理论,
《矩阵计算》是已故美国科学院院士、美国工程院院士吉恩 戈卢布(Gene H. Golub)等人的经典巨著,是矩阵计算领域的标准性参考文献。本书系统介绍了矩阵计算的基本理论和方法.内容包括:矩阵乘法、矩阵分析、线性方程组、正交化和*小二乘法、特征值问题、Lanczos 方法、矩阵函数及专题讨论等.书中的许多算法都有现成的软件包实现,每节后附有习题,并有注释和大量参考文献.第4 版增加约四分之一内容,反映了近年来矩阵计算领域的飞速发展。
本书以 Python 软件为基础, 详细介绍了数学建模的各种常用算法及其软件实现, 内容涉及高等数学、工程数学中的相关数学实验、数学规划、插值与拟合、微分方程、差分方程、评价预测、图论模型、多元分析、Monte Carlo 模拟、智能算法、时间序列分析、支持向量机、图像处理等内容, 既有对算法数学原理的详述, 又有案例和配套的 Python 程序. 本书含有 Python 快速入门基础, 可以帮助 Python 零基础的读者快速掌握Python 语言. 但对于没有其他任何编程语言基础的读者, 建议参考一些更加具体的 Python 相关书籍.
本书从课程评价领域的发展与国际现状,课程评价的方法,我国课程评价模型的建构与实践三个方面进行了系统论述。首先,本书对课程评价的理念与内涵、课程评价的模型及其发展历程进行回顾,对当前世界范围内主要国家的课程测量实践和国际课程评价项目进行比较与总结。其次,从混合方法论的视角出发,对课程评价方法进行梳理与分析。在此基础上,结合我国课程实际,建构起具有中国特色的课程评价模型和适合我国课程实情的课程测量与评价方法体系。*后,以我国小学数学为例,将所构建的课程评价理论模型进行逐层落实,实现对我国小学数学课程从宏观到微观层面的系统测量与评价,以验证所构建的课程评价模型及评价方法体系的合理性与科学性。
每年都会有来自全球各地学习数学的学生和教师聚集在 奇妙的数学 暑期课程,有意练一直是课程的主要内容.本书共分为三部分,第一部分为题目,介绍了2006年至2014年 奇解题训学 暑期课程的人学测试试题;第二部分给出了所有试题的完整或者加强的解答,许多问题都给出的数种解答:第三部分为术语表,详细地介绍了本书以到的的方式将这有些问题及复杂的数学思想,但所有的问题都可以用初等的技术来解决,当然,需要以巧妙的方式将这些技术结合起来.本书可作为准备参加数学竞赛的初高中生以及想扩大数学视野的读者的参考资料.
本书共分6章,主要涉及分数阶偏微分方程的理论分析以及数值计算。第1章着重介绍分数阶导数的由来以及一些分数阶偏微分方程的物理背景;第2章介绍Riemann-Liouville等分数阶导数以及分数阶Sobolev空间、交换子估计等常用的工具;第3章从理论的角度讨论一些重要的偏微分方程;从第4章开始重点讨论分数阶偏微分方程的数值计算,介绍了有限差分法、级数逼近法(主要是Adomian分解和变分迭代法)、有限元法以及谱方法、无网格法等计算方法。本书涵盖了该领域的一些前沿结果以及作者目前的一些研究结果。
本书是作者运用自己的独到的科学见解为全国普通高等学校本科生编写的 “高等代数”教材,内容包括:线性方程组的解法,行列式,数域K上的n维向量空间,矩阵的运算,一元多项式环和n元多项式环,线性空间,线性映射,双线性函数,二次型,具有度量的线性空间等。本书具以下有鲜明的特色:以研究线性空间及其线性映射为主线,科学地安排内容的讲授体系;用数学的思维方式编写教材,使学生既比较容易地学到“高等代数”的基础知识和基本方法,又受到数学思维方式的熏陶和训练,终身受益;编写体例新颖,每节均有“内容精华”“典型例题”“习题”三个栏目。
2019年是中华人民共和国成立70周年。70年来,中国教育学已经有了长足的发展。展望未来,新时代背景下中国教育学如何继往开来,接力发展,需要我们很好地去梳理已有的研究成果,准确定位中国教育学的发展历程和水平,明确未来的研究方向。该套丛书以国家重点课题 中华人民共和国教育学发展研究 为依托,集合全国教育学科各学科专业领军专家,作者队伍强大。从学理层面来看,教育学史越来越凸显其在教育学发展过程中的重要作用。对中国教育学史的研究,既是为了镜鉴现实,为了推动教育学术的传承和发展,又是为了推动我国教育学术的传承和发展以及为了保存和传播教育学发展的积淀。从读者需求方面来看,研究和学习教育学的人需要很好地了解本学科的发展史,明确自己研究的基础和学科定位。该丛书总共12卷本,每本书预计20万字,全套丛书预计2
南开大学数学专业的高等代数与解析几何课是国家精品课程,其教材《高等代数与解析几何(第二版)》是普通高等教育“十一五”国家级规划教材,也是2007年度普通高等教育精品教材。本书给出了该教材除第10章仿射几何与射影几何外的习题的全部解答,也给出了在教学中积累的许多重要、有趣的题目及其解答,有的题目给了多种解答,有的题目给了一些注解,希望本书不仅对使用该教材的读者有些助益,对未使用该教材的读者也有所帮助。
本书是理工科、技术学科、经济与管理、医学、农林等类学生学习高等数学课程的学习辅导书。全书共八章:极限与连续,一元函数微分学,一元函数积分学、空间解析几何、多元函数微分学,多元函数积分学、级数和常微分方程。本书重视教学内容与习题解析的同步衔接,由浅入深地讲解了大量例题,同时注重整合知识,科学地指导学生进行解题的训练与复习,并提供了进一步深入学习研究的习题。本书的深度和广度能适应大多数专业的数学学习需要,同时对于有志报考研究生的学生来说,也是一本较全面的复习用书。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:误差分析、解非线性方程的数值方法、解线性方程组的直接方法、插值法、数值积分。本书每章末均附有丰富、实用的习题。
《高等数学解题全攻略(下卷)》从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用。书中的经典问题解析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。《高等数学解题全攻略(下卷)》是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书主要介绍高等数学中300道经典习题的一题多解,这是作者在30多年教学过程中的积累和总结。书中的习题及其解法部分选自高等数学及数学分析类参考文献、国内外大学数学竞赛试题和研究生入学考试试题及其解答,部分源于作者多年的教学研究成果,其中有不少是作者编制的新题和给出的新颖解法,解法丰富多彩。每道习题均包括典型例题、特别提示及类题训练三个环节,供读者拓展解题思路、思考和练习之用,以加深对相关解题方法的理解和运用。全书例题与同类训练题总和达1500多道。习题的典型性与广泛性、解法的多样性与新颖性、解法的普适性与拓展性、类题的针对性及习题的海量性是本书的主要特色。
本书是作者根据多年从事高等代数与解析几何课程教学的经验编写而成的。本书分上、下两册。上册主要包括:空间向量、平面与直线、矩阵初步与n阶行列式、矩阵的秩与线性方程组、多项式、矩阵的相似与若尔当标准形;下册主要包括:常用曲面、二次型与矩阵的合同、线性空间、线性变换、欧氏空间。本书在编写中将二次型及其矩阵的特征值这一历史上的经典问题作为引入整个课程内容的一条叙述主线,将高等代数与解析几何有机地结合起来。本书合理地引入了每一个重要概念,给出了主要定理的推理步骤,设置了不少经典例题和习题来指导学生理解和运用这些定理。
本书是大学数学学习指导系列之一,包含了线性代数与空间解析几何中的主要内容。全书共分十一章,它们是行列式、矩阵、n维向量空间、线性方程组、空间解析几何、矩阵的特征值与特征向量、二次型、一元多项式、线性空间、线性变换和欧几里得空间等。本书精选了将近400道例题和400道练习题,选材注重突出课程的基本要求,力求做到解题简明,思路清晰,由易到难,从基本到综合,循序渐进。本书编写体例有内容精讲、典型例题、练习和提示与答案四部分。概述了每一章节的基本概念、基本定理和基本方法。在某些难以理解或容易出错的地方特别作出解释,指出各概念之间的联系。在大部分例题中,都有思路分析、解题过程、小结以及注解等,有的题还提供了每一节后面都安排了适量的习题,读者可以通过练习进一步巩固所学到的知识,掌握各种题型的解
本书首先介绍MATLAB语言程序设计的基本内容,在此基础上系统介绍各个应用数学领域的问题求解,如基于MATLAB的微积分问题、线性代数问题的计算机求解、积分变换和复变函数问题、非线性方程与*化问题、常微分方程与偏微分方程问题、数据插值与函数逼近问题、概率论与数理统计问题的解析解和数值解法等;还介绍了较新的非传统方法,如模糊逻辑与模糊推理、神经网络、遗传算法、小波分析、粗糙集及分数阶微积分学等领域。本书可作为一般读者学习和掌握MATLAB语言的教科书,高等学校理工科各类专业的本科生和研究生学习计算机数学语言的教材或参考书,可供科技工作者、教师学习和应用MATLAB语言解决实际数学问题时参考,还可作为读者查询某数学问题求解方法的手册。
《高等数学习题集》自2000年出版*版以来,受到读者的一致好评,现出版第五版,在保持原有特色和风格的基础上,增减和修改了部分习题,加强了相关内容的基本概念、基本理论和基本技能的训练,每个章节的习题搭配上更注意 坡度 ,且题型及内容更趋于合理。本书结构参照同济大学应用数学系编写的《高等数学》(第七版)内容顺序编排;在能力提高部分,又精选和增加了近来年部分考研题,供学有余力的学生选做;在附录中,仍保留《三角函数基本公式》,供学生学习时查阅。
本书是根据*非数学专业数学基础课教学指导分委员会制定的工科类本科数学基础课程教学基本要求编写的全英文教材,全书分为上、下两册。本书为上册,主要包括函数与极限,一元函数微积分及其应用和微分方程三部分。本书对基本概念的叙述清晰准确,对基本理论的论述简明易懂,例题习题的选配典型多样,强调基本运算能力的培养及理论的实际应用。本书可作为高等理工科院校非数学类专业本科生的教材,也可供其他专业选用和社会读者阅读。 The aim of this book is to meet the requirement of bilingual teaching ofadvanced mathematics. The selection of the contents is in accordance with thefundamental requirements of teaching issued by the Ministry of Education ofChina. Base on the property of our university,we select someexamples about petrochemical industry. These examples may help readers tounderstand the application of advanced mathematics in pe
本书是配套高等数学教学使用的学生课后练习的自测题,本书对学生掌握《高等数学》提出了较高要求,可作为对高等数学要求较高的专业的学生使用。