乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
《抽象代数的问题和反例》汇集了抽象代数中的大量问题和反例,主要内容有群论、环论、域和伽罗瓦理论等.《抽象代数的问题和反例》通过例子对抽象代数的基本概念进行了比较仔细的对比,考虑了很多重要定理在不同条件下是否成立的问题,给出了抽象代数中很多值得深入思考的问题.
本书特色: 经典理论与现代应用相结合。通过丰富的实例和练习,将数论的应用引入了更高的境界,同时更新并扩充了对密码学这一热点论题的讨论。 内容与时俱进。不仅融合了的研究成果和新的理论,而且还补充介绍了相关的人物传记和历史背景知识。 习题安排别出心裁。书中提供两类由易到难、富有挑战的习题:一类是计算题,另一类是上机编程练习。这使得读者能够将数学理论与编程技巧实践联系起来。此外,本书在上一版的基础上对习题进行了大量更新和修订。
本书通过五十三个有趣味的、典型的或具有历史渊源的问题分析、解答,着重介绍了逻辑推理、命题代数、集合计算、初等数论、图论和初等组合数学等几个数学分支,使已具备离散数学初步知识的读者更多地了解这门学科的实质和思维方法,引导读者温游奥秘的数学世界,体会灵感、思维之美,本书是一本趣味性、知识性兼备的读物。 本书可作为初中学生、高中学生、大学低年级学生的课外读物,也可用作中学教师教学时选题参考和辅导数学竞赛的参考读物,具有中学以上文化水平的干部、职工中的数学爱好者,阅读此书将是一种精神享受。
《李群和李代数》是现代数学中的基本的研究对象,在整个数学大厦中占有重要的位置。如果把整个数学看成一个按重要性从中心往外发展的一个系统,那么李群和李代数必定位于这一系统的中心附近。本书由赵旭安编著。
《生命的化妆》主要内容包括:追求生命的化妆、给总统化妆、撒切尔夫人印象、主持人素质的王刚、我仰视的敬一丹、滔滔不绝水均益、和倪萍一起的日子、实话实说崔永元、知性执著的杨澜、国色天香、春风桃花董文华等。
《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。 《群表示论》可作为高等院校数学系和物理系的研究生以及高年级本科生的群表示论课的教学用书,也可供数学系和物
用循环矩阵作为预处理共轭梯度法的预处理矩阵始于1986年。在这本薄书中,作者主要从理论的角度研究了一些的预处理矩阵,并给出了其在求解常微分方程系统中的应用。《Toeplitz系统预处理方法》包含了近些年得到的关于Toeplitz快速迭代解法的一些重要的研究成果,它可为科学计算相关专业的高年级本科生所接受,要求读者只要具有线性代数、微积分、数值分析和科学计算的基本知识即可。同时,《Toeplitz系统预处理方法》也可作为对Toeplitz快速迭代算法感兴趣的科研和工程计算人员的参考书。 金小庆博士是澳门大学数学系的教授。
本书通过五十三个有趣味的、典型的或具有历史渊源的问题分析、解答,着重介绍了逻辑推理、命题代数、集合计算、初等数论、图论和初等组合数学等几个数学分支,使已具备离散数学初步知识的读者更多地了解这门学科的实质和思维方法,引导读者温游奥秘的数学世界,体会灵感、思维之美,本书是一本趣味性、知识性兼备的读物。 本书可作为初中学生、高中学生、大学低年级学生的课外读物,也可用作中学教师教学时选题参考和辅导数学竞赛的参考读物,具有中学以上文化水平的干部、职工中的数学爱好者,阅读此书将是一种精神享受。
《线性代数/中南大学开放式精品示范课堂建设计划教材·线上线下立体化教材》主要内容包括矩阵及其运算、行列式及其计算、矩阵的逆、Gramer法则、矩阵运算的实际案例分析、矩阵运算的Matlab实验,矩阵的初等变换与初等矩阵、向量的线性相关性、向量空间、向量的线性相关性的实际案例分析、向量的线性相关性的Matlab实验,线性方程组的相容性、齐次线性方程组、非齐次线性方程组、线性方程组实际案例分析、求解线性方程纽的Matlab实验、方阵的特征值与特征向量、矩阵的相似对角化、实对称矩阵的正交相似对角化、二次型及其标准型、正定矩阵与正定二次型、相似对角化与二次型标准化的实际应用案例分析、相似对角化的Matlab实验,线性空间的基本理论等。《线性代数/中南大学开放式精品示范课堂建设计划教材·线上线下立体化教材》理论叙述详细,例题丰
本书为丛书中的部,涵盖了初等数论的大部分内容,包括整除、同余、数论函数、二次剩余和原根等,此外也涉及有限域的基本知识。本书内容精炼扼要,习题丰富(不少比较新颖或具有难度),另有5个录供读者进一步研究。
本书包含了组合数学的基本内容与方法:抽屉原则、排列组合、容斥原理、生成函数、匹配、组合设计。本书写作力求简练。若干难度不大,且有利于读者掌握知识方法的证明写得很简略,希望读者能通过的独立思考掌握组合数学的内涵。
本书是一部数学问题集,全书分为方田(面积、分数计算)、粟米(比例) 、衰分(配分比例)、少广(开平方、立方)、商功(体积计算)、均输(复杂的配分比例)、盈不足(盈亏)、方程(线性方程组)、勾股(勾股计算及测量)等九章,共246问2O2术,故称“九章算术”。其内容涉及算术、代数、几何等诸多领域,并与实际生活紧密关联,充分体现了中国人的数学观和生活观。全书章与章之间、同章“术”与“术”之间、同“术”所驭算题之间按照由浅入深、由简而繁的顺序编排。 这是一部与现代数学的主流思想完全吻合的中国数学经典著作,一部最早却能体现现代宇宙学精神的书。它被历代数学家尊为“算经之首”的《九章算术》,是中国古代算法的扛鼎之作,与古希腊欧几里得的《几何原本》并列为途径方法大不相同的、东西辉映的世界两大数学体系的代表。本书是其白话译
《数学四色问题证明》详细地介绍了四色问题的数学证明方法,即在证明了三次平面图形成定理、边二色回路定理和面二色通路定理的基础上,进而证明了四色问题成立。这些证明的思路和方法,对于启发人们数学思考的多样化和推动基础数学研究的发展是大有益处的。本书由时徐俊杰著。
范建熊编著的《不等式的秘密(卷)》部分(1~8章)的内容主要介绍了常用的不等式,如AM—GM不等式、Cauchy—Schwarz不等式、Hslder不等式等,并给出了这些不等式新颖、有趣的证明。通过大量的例子介绍了初等不等式的证明方法和技巧,如Cauchy求反技术、Chebyshev关联技术、平衡系数法、凸函数法和导数等方法。第Ⅱ部分(第9章)是作者收集了近百个国内不等式的典型问题,内容丰富、解答新颖,富有启发性。《不等式的秘密(卷)》适合高中以上文化程度的学生、教师、不等式爱好者参考使用,是一本数学奥林匹克有价值的参考资料。