《群表示论》是作者在北京国际数学研究中心给数学基础强化班授课讲稿的基础上,结合在北京大学数学科学学院多次讲授群表示论课的心得体会编写而成,主要内容包括:有限群在特征不能整除群的阶的域上的线性表示、无限群在复(实)数域上的有限维和无限维线性表示等。《群表示论》紧紧抓住群表示论的主线——研究群的不可约表示,首先提出要研究的问题,探索如何解决问题,把深奥的群表示论知识讲得自然、清晰、易懂。在阐述无限群的线性表示理论时,本书介绍了数学上处理无限问题的典型方法,并且对于需要的拓扑学、实(复)分析以及泛函分析的知识作了详尽介绍。本书在绝大多数章节中都配有习题,并且在书末附有习题解答。 《群表示论》可作为高等院校数学系和物理系的研究生以及高年级本科生的群表示论课的教学用书,也可供数学系
《初等数论(第三版)》自1992年9月出版以来,深受教师和学生的欢迎,在第二版中,作者根据十年来读者提出的宝贵意见,以及在教学实践中的体会,对《初等数论(第3版)/高等学校数学教材》内容作了进一步修改与完善。 《初等数论(第三版)》是第三版,其指导思想是:如何在原有的框架和内容作尽可能少的改动下,使本书让教初等数论的老师更好用,学初等数论的读者更易学,特别是自学在本版中,除了附录四之外,本书内容整体上没有增加或减少。在附录四中补充了这十年国际数学奥林匹克竞赛中与数论有关的试题,以及增加了典型试题的解法举例一节(共40道题)。本版所作的主要改变是对本书的结构、编排和一些内容的讲述作了改进:把讨论同一问题的内容加以合并;对原来的 节 尽可能划分成若干 小节 ,以突出每节内容中的重点,使得各个重
乔治 布尔发明了一套符号用来进行逻辑演算,创造了逻辑代数系统,完成了逻辑的数学化。布尔称他的工作为 思维的定律 ,理由是命题代数和思维过程的原则紧密相联。 新的知识常常会为你解决一些意想不到的难题。布尔代数就可以应用于解决逻辑问题,这些问题的条件形成一个命题的总体,我们可以利用它证实某些其他命题的真和假。布尔代数在代数学、逻辑演算、集合论、拓扑空间理论、测度论、概率论、泛函分析等数学分支中均有应用。 本书介绍了布尔代数、广义布尔代数、布尔方程、布尔矩阵、布尔表示等概念,还列举了布尔代数在逻辑线路、极大极小值等问题中的应用。
本书运用矩阵论研究的新成果对线性代数中的行列式、矩阵论、线性方程组、多项式、二次型、线性空间和线性变换的理论及应用进行综合研究,以展示线性代数的核心思想及处理线性代数问题的简捷、有效、实用的核心技术。本书还特别研究了一般教科书中难以展开讨论的若干重要内容,精心设计和选编了难度相当或略高于硕士研究生入学考试的典型、实用而新颖的例题和习题,以此向读者展示线性代数核心思想和技术的具体应用。书末附有详细的习题答案或提示。
本书主要讨论了代数问题中经常出现的十个主题,每一章都以简短的介绍开始,其中包括一些示例,帮助读者掌握所提出的问题及解法的主要思想。全书分为两部分,第1部分讨论了二次函数,柯西不等式,代数式的极大、极小值问题,复数,拉格朗日恒等式及其应用等内容,并给出相关问题;第2部分为第1部分的所有问题提供了解答。 本书的目标受众包括所有正在接受数学竞赛培训或希望提高代数技能的学生,同时也欢迎数学爱好者参阅。
本书为《代数学教程》第三卷,主要讨论我们熟悉的那些数系:自然数集、整数环、有理数域、实数域、复数域,以及超复数等.编者从数学结构的角度出发,以新颖的论述方式讲述了每一种数系的构造(运算)及其性质,建立起了严格、系统的科学数系的逻辑过程.本书适合高等院校理工科师生及数学爱好者阅读.
本书为《代数学教程》第五卷,主要讨论我们熟悉的那些多项式:一般域上的多项式、有理数域上的多项式、实数域上的多项式、复数域上的多项式以及多个未知量的多项式等.编者从数学结构的角度出发,以新颖的论述方式讲述了每一类多项式的构造及其性质,用代数观点来叙述全部理论. 本书适合高等院校理工科师生及数学爱好者阅读.
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
内容简介 本书是美国著名数学竞赛专家TituAndreescu教授及其团队精心编写的试题集系列中的一本。 本书从解题的视角举例说明初等代数中的基本策略和技巧,书中涵盖了初等代数的众多经典论题,包括因式分解、二次函数、方程和方程组、Vieta定理、指数和对数、无理式、复数、不等式、连加和连乘、多项式以及三角代换等主题。为了让读者能够对每章中讨论的策略和技巧进行实践,除例题之外,作者精选了108个不同的问题,包括54个入门问题和54个高级问题,给出了所有这些问题的解答,并对不同的方法进行了比较。 本书适合于热爱数学的广大教师和学生使用,也可供从事数学竞赛工作的相关人员参考。
《解析数论问题集(第2版)》是课后大约500个解析数论习题的汇编,同时也是解析数论的基本教程。全书共分为两部分:习题与解答。读者可通过这些习题学习解析数论的一些重要方法,了解解析数论的研究领域。 《解析数论问题集(第2版)》可供大专院校数学系师生、研究生及相关的学科工作者阅读。
这本书源自巴黎综合理工大学的一年级课程,全书主要内容包括: 数学小词典 以更紧凑的形式给出了如下数学基本概念的要点:群、环、域、矩阵、拓扑、紧性、连通性、完备性、数值级数、函数序列的收敛性、埃尔米特空间等,同时包含一百多个习题及解答。 讲述数学根基中的3个理论:有限群表示论、经典泛函分析和全纯函数理论。 13个问题校正综合了书中的定理,证明出一些漂亮结果(如证明 (3)是无理数)。 本书的主要特色在于强调数学的文化特性和数学的统一性。许多脚注都暂时离开数学的 高速公路 而进行了一次短途旅行。7个附录在课程内容范畴内讲述了经典数学文献的一些专题,展示如何结合这些基本理论来解决有深刻内涵的问题。其中之一是关于素数定理,它的证明经历了150多年才完成;另一个则是介绍了Langlands纲领, 数论学家已经围
本书是根据苏联哈尔科夫大学出版社出版的苏什凯维奇于1954年所著《数论初等教程》译出的。 本书共分为七章,分别介绍了数的可约性、欧几里得算法与连分数、同余式、平方剩余、元根与指数、关于二次形式的一些知识、俄国和苏联数学家在数论方面的成就。本书可作为综合大学及师范学院数学系的数论教科书,也可供自修数论的读者和中学教师参考阅读。
本书英语原版*初由美国数学会(American Mathematical Society)出版,原书名是Combinatorial Problems and Exercises: Second Edition, 原书作者是 L szl Lov sz,原书版权声明是 ?1979 held by the American Mathematical Society.本翻译版由高等教育出版社有限公司经美国数学会授权和许可出版。
本书汇集了抽象代数中的大量问题和反例, 主要内容有群论、环论、域和伽罗瓦理论等. 书中通过例子对抽象代数的基本概念进行了比较仔细的对比, 考虑了很多重要定理在不同条件下是否成立的问题, 给出了抽象代数中很多值得深入思考的问题.
本书是一本关于伪码体制引信及其特征参数提取与干扰效果评估研究的专著。全书详细地介绍了几种常见的连续波伪码体制引信和脉冲伪码体制引信的工作机理及其性能,重点阐述了三种典型伪码体制引信(伪码调相连续波引信、伪码调相与正弦调频复合调制连续波引信、PRCPM SFM复合调制脉冲串引信)信号特征参数的提取方法。在此基础上,研究了压制性和欺骗性干扰对这三种引信的干扰效果,分析了影响其干扰效果的主要因素,并对干扰效果进行了定量评估。利用Simulink仿真软件建立了伪码调相连续波引信接收机系统仿真模型,并对该引信的干扰效果进行了仿真分析。本书的研究结果为伪码体制引信对抗双方在提高干扰、抗干扰能力方面提供了理论依据。
本书群论方面通过早引入群作用,利用比较少的篇幅讲了Sylow定理,幂零和可解群的知识,并证明了大于等于5元素集合上的交错群为单群。对环论方面,我们将重点放在利用模论来研究环,将和群论类似的内容放入习题中去,环论刻画了半单环,证明了有限群表示理论中的有关定理,还包括了主理想整环上有限生成模的结构定理及应用,分式模有关理论以及代数几何中的准素分解定理和Hilbert基定理。在域的Galois理论中除了传统的5次以上方程无公式解之外,还证明了代数闭域的唯一存在定理,有限域的结构,以及Hilbert零点定理,另外我们还用一章介绍了目前研究比较多的各种代数,包括Hopf代数、李代数、Jordan代数,证明了李代数泛包络代数的PBW定理以及有限单代数的Burnside群理论。最后一章介绍了范畴有关的概念,包括一些基本定理。
无
本书向读者介绍了代数学自诞生以来的发展历程,内容涵盖代数学中的重要概念,如未知量、抽象概念、方程、向量空间、域论、代数几何,等等。作者以诙谐的笔触展现了代数几千年发展史中的重大事件和核心人物,并介绍了代数的基本知识,以代数这一重要而有趣的角度呈现数学思维的戏剧性进化历程,向读者展现了一种感知世界的全新方式。作者凭借历史学家的叙事能力,带领读者踏上一段令人称叹、充满挑战的数学之旅。本书适合对代数学及其历史感兴趣的读者阅读。
本书是经典的离散数学教材,为全球多所大学广为采用。本书全面而系统地介绍了离散数学的理论和方法,内容涉及数学推理、组合分析、离散结构、算法思维以及应用与建模。全书取材广泛,除包括定义、定理的严密陈述外,还配备大量的实例和图表的说明、各种练习和题目以及丰富的历史资料和网站资源。第6版在前五版的基础上做了大量的改进,使其成为更有效的数学工具。 本书可作为高等院校数学、计算机科学和计算机工程等专业的教材或参考书。
本书介绍了中世纪伊斯兰文明中的数学成就、有名伊斯兰数学家花拉子密及其代表作《代数学》,并将《代数学》与不同文明、不同历史时期的相关数学著作进行比较,以此来探究花拉子密的数学思想渊源及其在数学目