本书是《普林斯顿 读本》系列图书的第二本,该套书的论述风格友好、平易近人,通过作者与读者之间的互动对话和相关示例非常清晰地阐明了数学概念,提供了命题和定量逻辑方面的知识,可以使读者精通自己的数学思路。本书讲解了学习实分析的基础内容,包括基本的数学与逻辑、实数、集合、拓扑、序列等.作者以通俗易懂且略带幽默的口吻讲述了两步式求解方法:首先展示如何回溯到求解问题的关键,之后说明如何严谨规范地写下解题过程。书中还给出了丰富的示例,帮助学生巩固所学知识。
《数学分析(第二版)》介绍了数学分析的基本概念、基本理论和方法, 包括一元(多元)函数极限理论、一元函数微积分学、级数理论和多元函数微积分学等. 《数学分析(第二版)》共分三册. 本册内容包括不定积分、定积分、定积分应用和反常积分、数项级数、函数项级数、幂级数与 Fourier级数. 《数学分析(第二版)》列举了大量例题来说明数学分析的定义、定理及方法, 并提供了丰富的思考题和习题, 便于教师教学与学生自学. 每章都有小结, 对该章的主要内容作了归纳和总结, 章末配有复习题, 方便学生系统复习. 《数学分析(第二版)》还配有 23个关于主要概念和重要定理讲解的小视频, 内容呈现得更加生动直观.
本书是供综合性大学和师范院校数学类各专业本科一、二年级学生学习数学分析课程的一部教材,分上、中、下三册。本册为下册,讲授多元函数的数学分析理论,内容包括多元函数的极限和连续性、多元函数微分学及其应用、含参变量的积分、多元函数积分学及其应用、场论初步、微分形式和斯托克斯公式等。
本书主要通过典型例题陈述数学分析中典型解题方法和技巧,内容涉及单变量微积分和级数。全书按章、节编排,每节包括内容精析、典型例题和习题三部分,书后附有习题解答与提示。
数学分析是数学系的一门重要的必修课,是学习其它数学课的基础。同时,也是工科高等数学的主要组成部分。吉米多维奇著的《数学分析习题集》是一本国际知名的著作,它在中国有很大影响,早在上世纪五十年代,就出版了该书的中译本。现安徽人民出版社翻译出版了新版的吉米多维奇《数学分析习题集》。新版的习题集在原版的基础上增加了部分新题,该习题集有五千道习题,数量多,内容丰富,包括了数学分析的主题。部分习题难度较大,初学者不易解答,应安徽人民出版社的同志邀请我们为新版的习题集作解答。本书可以作为学习数学分析过程中的参考用书。
本书可作为理工科院校对数学要求较高的非数学类专业本科生教材。通过这门课的学习,使学生系统地获得一元与多元微积分及其应用、向量代数与空间解析几何、无穷级数与常微分方程等方面的基本概念、基本理论、基本方法和运算技能,为学习后续课程和知识的自我更新奠定必要的数学基础;在传授知识的同时,培养学生比较熟练的运算能力、抽象思维和形象思维能力、逻辑推理能力、自主学习能力以及一定的数学建模能力,正确领会一些重要的数学思想方法,使学生受到用数学分析的基本概念、理论、方法解决几何、物理及其他实际问题的初步训练,以提高抽象概括问题的能力和应用数学知识分析解决实际问题的能力。
激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
本书系统地介绍了数据如何始于业务、取于业务、用于业务。既有扎实的理论铺设,又有具体的案例支撑,通俗易懂地回答了数据“怎么来”和“怎么用”的问题。同时,本书总结出了解决业务分析难题的六大步骤,包括对 终数据分析产生关键影响的数据源的选取方法,以及通过对业务模块的判断确定分析方法的适用场景, 终推演、验证、分析出结论,并选择 的分析结果展现方式,让数据分析全过程形成闭环。 本书的内容从底层原理出发,帮助读者打好数据分析基本功。在原理的讲解过程中,通过提问、思考、解答、案例分享的方式,结合三位专家十多年的行业经验,让读者从根本上理解数据分析、学会数据分析。本书适合数据分析从业也、数据分析爱好者阅读,也适合大中专院校数据相关专业的老师和学生使用。
《泛函分析索伯列夫空间和偏微分方程(英文版)》提出了一个连贯的、确切的、统一的方法将两个来自不同领域的元素——泛函分析和偏微分方程,结合在一起,旨在为具有良好实分析背景的学生提供帮助。通过详细地分析一维PDEs的简单案例,即ODEs,一个对初学者来说比较简单的方法,该书展示了从泛函分析到偏微分方程的平滑过渡。
许绍溥编著的《数学分析教程》版在南京大学数学系连续使用了近二十年。《数学分析教程》第二版我们对全书作了详细修订。全书概念准确,论证严谨,文字浅显易懂,便于自学。丰富多彩的例题与多层次的习题大大加强了传统的分析技巧的训练,同时又注意适当引进近代分析的概念。本书可作为综合性大学、师范院校数学系各专业的教材,也可作为其他对数学要求较高的专业的教材或教学参考书,还可作为高等学校数学教师以及其他数学工作者参考用书以及研究生入学考试的复习用书。 全书分上下两册出版。上册共9章,包括极限理论、一元函数微积分、多元函数及其微分学。下册共10章,包括级数理论、傅里叶级数、反常积分与含参变量积分、线积分、面积分与重积分、囿变函数与RS积分、场论等。
《反应扩散方程引论(第2版)》内容简介:在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。叶其孝、李正元、王明新、吴雅萍编著的《反应扩散方程引论(第2版)》详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解《反应扩散方程引论(第2版)》的内容。《反应扩散方程引论(第2版)》可作为高等院校数学、应用数学或其他有关专业的、研究生的或教师的教学参考书,也可供相关研究领域的科研人员和工程技术人员参考。
数学分析是大学数学系的一门重要的必修课,是学习其它数学课的基础。同时,也是工科高等数学的主要组成部分。吉米多维奇著的《数学分析习题集》是一本国际知名的著作,它在中国有很大影响,早在上世纪五十年代,就出版了该书的中译本。现安徽人民出版社翻译出版了新版的吉米多维奇《数学分析习题集》。新版的习题集在原版的基础上增加了部分新题,该习题集有五千道习题,数量多,内容丰富,包括了数学分析的主题。部分习题难度较大,初学者不易解答,应安徽人民出版社的同志邀请我们为新版的习题集作解答。本书可以作为学习数学分析过程中的参考用书。
200多个例题中包括了一些比较新鲜有趣的问题,作为教材的补充也选择了一些帮助理解基本概念、掌握基本方法的问题.书末给出两个附录:附录一给出了南京大学出版社出版的《数学分析教程》(许绍溥、宋国柱等编)一书中*章到第十九章的总习题及其解答;附录二介绍了南京大学硕士研究生入学考试的数学分析试题(1992~2003年)及其解答。
本书主要通过典型例题陈述数学分析中典型解题方法和技巧,内容主要涉及多变量微积分,全书按章、节编排,每节包括内容精析、典型例题和习题三部分,书后附有习题解答与提示。
《数学建模方法与分析(原书第4版)》系统介绍数学建模的理论及应用,作者米尔斯切特将数学建模的过程归结为五个步骤(即“五步方法”),井贯穿全书各类问题的分析和讨论中。书中阐述了如何使用数学模型来解决宴际问题,提出了在建立数学横型并且求解得到结论之后如何进行灵敏性和稳健性分析。此外,将数学建模方法与计算机的使用密切结合,不仅通过对每个问题的讨论给了很好的示范。而且配备了大量的习题。 本书适合作为高等院校相关课程的教材和参考书,也可供参加 数学建横竞赛的人员参考。