本书根据J. R. 曼克勒斯先生所著的Analysis on Manifolds一书译出。原书禀承了作者一贯的写作风格,论述精辟,深入浅出。主要内容包括:第一章复习并扩充了全书所需要的代数与拓扑知识;第二至四章系统论述了n维欧氏空间中的多元微积分,这是对普通数学分析的推广与提高,也是为流形上的分析做准备;第五至八章系统论述流形上的分析,其中包括一般Stokes定理和de Rham上同调等内容。此外,为便于初学者理解与接受,本书采用将流形嵌入高维欧氏空间中的观点讲述,故而又在第九章给出了抽象流形的概念并简要介绍了一般可微流形和Riemann流形。
本书是一本调和分析的入门书。全书分为三部分,首先,给出了直线R上的Fourier分析理论,包括Fourier级数和Fourier变换;接着,将1R上的Fourier分析思想推广到局部紧Abel群(LCA群)上;最后,介绍了非交换群上调和分析技巧,特另抛,以Heisenberg群为例描述了非紧非交换群上的Fourier分析理论。每章后都配备了一定数量的习题,可作为本书内容的补充或延伸。
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981年第1版出版以来,到2015年已经修订、增补至第7版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,第二卷内容包括:连续映射的一般理论、赋范空间中的微分学、重积分、中的曲面和微分形式、曲线积分与曲面积分、向量分析与场论、微分形式在流形上的积分、级数和含参变量的函数族的一致收敛性和基本运算、含参变量的积分、傅里叶级数与傅里叶变换、渐近展开式。与常见的数学分析教材相比,本卷内容相当新颖,系统地引进了现代数学(包括泛函分析、拓扑学和现代微
本书是Folland教授的名著《实分析》的第二版。与*版相比,在一些内容的编排上作了适当调整,同时引入了一些新的内容,去掉了已经过时的内容,更有利于学生学习与思考。作为一部优秀的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。
在物理学、化学、生物学、经济学及各种工程问题中提出的大量反应扩散问题,日益受到人们的重视。本书详细阐述了与这些问题有关的数学理论、方法及其应用,论证严谨,深入浅出,有一定的自封性,能把读者较快地带到反应扩散方程各种问题的研究中去。每章末附有大量习题,有助于读者深入理解本书的内容。
激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
本书是随机分析方面的名著之一。以主题广泛丰富,论述简洁易懂而又不失严密著称。书中阐述了各领域的典型应用,包括数理金融、生物学、工程学中的模型。还提供了很多示例和习题,并附有解答。读者对象:数学分析及金融数学专业的高年级本科生,研究生和研究人员。
本书汇集了泛函分析教学过程中学生提出的大量问题 , 收集了很多主要概念和定理的反例, 主要是关于度量空间、赋范空间、 Hilbert空间和算子等问题和反例.
本书是作者在莫斯科大学力学数学系多遍讲授数学分析课程的基础上写成的,自1981 年第1 版出版以来,到2015 年已经修订、增补至第7 版。作者加强了分析学、代数学和几何学等现代数学课程之间的联系,重点关注一般数学中*有本质意义的概念和方法,采用适当接近现代数学文献的语言进行叙述,在保持数学一般理论叙述严谨性的同时,也尽量体现数学在自然科学中的各种应用。全书共两卷,*卷内容包括:集合、逻辑符号的运用、实数理论、极限和连续性、一元函数微分学、积分、多元函数及其极限与连续性、多元函数微分学。本书观点较高,内容丰富新颖,所选习题极具特色,是教材理论部分的有益补充。本书可作为综合大学和师范大学数学、物理、力学及相关专业的教师和学生的教材或主要参考书,也可供工科大学应用数学专业的教师和学生参考使用。
This book is a translation of the forthcoming fourth edition of our German book "Funktionentheorie P' (Springer 2005). The translation and the LATEX files have been produced by Dan Fulea. He also made a lot of suggestions for improvement which influenced the English version of the book. It is a pleasure for us to express to him our thanks. We also want to thank our colleagues Diarmuid Crowley, Winfried Kohnen and Jorg Sixt for useful suggestions concerning the translation.
《工科数学分析教程(上册)}是一本信息化研究型教材本书包括数列极限、函数极限与连续、导数的计算与应用、泰勒公式、不定积分、定积分的应用、广义积分、数项级数.本书体系内容由浅入深,符舍学生认知规律.每章都有提高课,内容包括混沌现象与极限、连续函数不动点定理以及应用、极值问题与数学建模、泰勒公式与科学计算、积分算子的磨光性质以及应用等系列内容,初步为学生打开现代数学的窗口.同时每章都设置了系列探索类问题,包括理论问题、应用问题,培养学生应用数学解决实际问题的能力.本教材有与之配套的MOOC 课程,充分利用多媒体信息技术,将复杂数学问题直观化,图文并茂视频课为读者营造一对一的视频授课环境,通过扫描教材中的二维码进入视频课的学习,使得学生对数学问题的理解更通透.
《时滞反应扩散方程与上下解方法》详细阐述与时滞反应扩散方程相关的*研究成果. 针对时滞反应扩散系统, 利用上下解方法、单调迭代方法、不动点理论及泛函微分方程振动性理论, 证明时滞反应扩散方程周期解及概周期解的存在性、性及稳定性理论, 书中还介绍时滞反应扩散方程平衡解的存在稳定性理论、波前解的存在性理论、平衡解的振动性理论、解的动力学行为及奇异摄动理论.
《数学分析精读讲义(上下册)》是以华东师范大学数学系所编的《数学分析(第三版)》内容为主线而编写的教学辅导书,主要是为课程精读教师的教学及学生学习《数学分析精读讲义(上下册)》的课后复习与提高之用,是在作者二十多年来讲授数学分析课程内容的基础上发展起来的,《数学分析精读讲义(上下册)》按章节编写,每节内容丰要包括:内容精读、疑难解答、典型例题、巩同提高,小书切合实际,十分注意提高学生对数学分析的基本概念、基本定理、基本计算技巧的理解和应用,通过对一些典型例题的讲解与分析,由浅入深、分层次、分类型地介绍微积分学的解题思路,特别注重一法多用、一题多解,同时关注形象思维的培养,期望为读者更有效地掌握微积分学的基本功、打下数学分析坚实的基础,提供适当的帮助。
编辑手记 本书是向苏联数学成就致敬的项目. 苏联数学进展系列 由不同数学领域的一名或多名资深专家作为主编,内容包含来自俄罗斯的世界数学家的论文,此系列书籍在21卷之后作为 美国数学协会译丛2 的子系列出版,现在更名为 苏联数学进展系列 . 本书为此系列的第13卷《幂等分析》. 幂等分析是数学分析的一个新分支,代数结构也是来源于幂等分析.在经典分析中,主要的代数结构,其支撑作用的基础是一个场的结构(RorC).让我们从场的公理列表中删除存在逆元的要求.由此获得的半环结构太笼统,不能作为分析具有该半环中的值的函数的基础,但是,如果删除的 添加 属性被幂等性所取代,这种结构具有足够的刚性,可以在分析中取得进展,甚至可以远远超前人:在 线性 (在新操作意义上)的情况下,功能分析的许多基本事实的类似物被证明是有效的(并且是非凡的),像Resz和
A carefully prepared account of thebasic ideas in Fourier analysis and its applications to the studyof partial differential equations. The author succeeds to make hisexposition accessible to readers with a limited background, forexample, those not acquainted with the Lebesgue integral. Readersshould be familiar with calculus, linear algebra, and complexnumbers. At the same time, the author has managed to includediscussions of more advanced topics such as the Gibbs phenomenon,distributions, Sturm-Liouville theory, Cesaro summability andmulti-dimensional Fourier analysis, topics which one usually doesnot find in books at this level. A variety of worked examples andexercises will help the readers to apply their newly acquiredknowledge.
本书是复分析领域近年来较有影响的一本著作。作者用丰富的图例展示各种概念、定理和证明思路,十分便于读者理解,充分揭示了复分析的数学之美。书中讲述的内容有几何、复变函数变换、默比乌斯变换、微分、非欧几何、复积分、柯西公式、向量场、复积分、调和函数等。 本书可作为大学本科、研究生的复分析课程教材或参考书。