本书是Folland教授的名著《实分析》的第二版。与*版相比,在一些内容的编排上作了适当调整,同时引入了一些新的内容,去掉了已经过时的内容,更有利于学生学习与思考。作为一部优秀的教材,内容不仅涵盖了分析学的基本内容和技巧,还介绍了一些从事其他领域的研究工作所必需的基础知识。此外,教材中的大量习题,能够进一步拓展思维,从而易于更加深入地了解这些内容背后的真实想法。本书适用于理工类专业及相关专业的研究生。
《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》是г.м.菲赫金哥尔茨继《微积分学教程》三卷本后的又一部关于数学分析的经典著作,是作者总结多年教学经验编写而成的。 《俄罗斯数学教材选译·“十一五”国家重点图书:数学分析原理(第2卷)(第9版)》针对大学数学系一二年级的分析课程,因此分两卷出版。卷内容包括:实数、一元函数、极限论、一元连续函数、一元函数的微分法、微分学的基本定理、应用导数来研究函数、多元函数、多元函数的微分学、微积分的几何应用和力学应用,书中专列一章讲述数学分析基本观念发展简史;第二卷内容包括:数项级数、函数序列及函数级数、反常积分、带参变量的积分、隐函数和函数行列式、线积分、二重积分、曲面面积和面积分、三重积分、傅里叶级数等,书后
《高等数学习题集精品系列·数学分析例选:通过范例学技巧》通过解答一些特别挑选的范例(共153个题或题组)来提供数学分析习题的某些解题技巧,还给出了20世纪60年代以来的某些研究生入学试题及多种国外资料的杂题(共200个题或题组)。《高等数学习题集精品系列·数学分析例选:通过范例学技巧》包含问题总数超过600个,其中大约450个给出解答或提示。这些例题和杂题有一定的难度。
This book is a translation of the forthcoming fourth edition of our German book "Funktionentheorie P' (Springer 2005). The translation and the LATEX files have been produced by Dan Fulea. He also made a lot of suggestions for improvement which influenced the English version of the book. It is a pleasure for us to express to him our thanks. We also want to thank our colleagues Diarmuid Crowley, Winfried Kohnen and Jorg Sixt for useful suggestions concerning the translation.
本书较为系统地总结了Finsler流形之间的调和映射、Finsler极小子流形及Finsler-Laplace算子*特征值等有关方面的基本理论和**成果。为了自成体系,同时也为了方便读者查阅,本书在第1章先概要介绍Finsler几何的基础知识、常用的公式和方法。此外,本书还弥补和修正了相关论文中的一些错漏之处,改进和完善了部分结果。《BR》 全书共分8章,第1章主要介绍Finsler流形的基础知识。第2章和第3章丰要介绍Finsler调和映射(包括调和映射和复Finsler调和映射)的相关概念、公式、性质和应用。第4章和第5章主要介绍Finsler流形上的各种Laplace算子及其特征值估计。第6~8章主要介绍Finsler流形的HT-极小子流形和BH-极小子流形的性质及其分类。
本书是《圆锥曲线习题集》的下册第1卷,内收有关椭圆的命题500道,抛物线的命题200道,双曲线的命题200边,综合命题100道,另有圆和直线的命题300道,全书合计1 300道,绝大部分是首次发表. 1 300道命题都是证明题,全部附图.全书分成5章45节,有些命题可供专题研究. 本书可作为大专院校师生和中学数学教师的参考用书,也可作为数学爱好者的补充读物.
激波(或称冲击波)的产生与传播是一个普遍的物理现象。例如在连续介质中的爆破通常会产生一个激波由爆破源往外传播,在超过音速的高速飞行物体前方通常也总会有一个激波随之一起运动。在空气动力学的研究中激波的运动(包括其生成、传播、反射等)占着极其重要的地位,对激波运动的理论研究涉及许多困难的数学问题。本书以偏微分方程为主要工具对激波反射所涉及的数学问题做深入的分析。为方便读者,本书结合以后展开讨论的需要先介绍流体力学方程组以及激波的一些基本事项,然后对定常与非定常的激波反射,正则反射与马赫反射都逐一进行分析,并对其中一些重点的问题给出详细的数学证明。同时,本书也提出一些未解决的问题并指出其中会遇到的困难,期待后续研究能有新的推进。本书适合有关专业的研究生与科研人员、工程技术人员阅读
今天不等式在数学领域发挥着显著的作用,而且已经形成了一个非常活跃、引人注目的研究领域。与之前的研究不等式的书相比,该书讲述了许多新的内容,即使在对经典的不等式的讲述中,也添加了许多新研究。作者力求*限度的详尽,而且给出了尽可能多的相关参考资料。目次:引言;普通不等式;特殊不等式;人名索引;主题索引。
本书是随机分析方面的名著之一。以主题广泛丰富,论述简洁易懂而又不失严密著称。书中阐述了各领域的典型应用,包括数理金融、生物学、工程学中的模型。还提供了很多示例和习题,并附有解答。读者对象:数学分析及金融数学专业的高年级本科生,研究生和研究人员。
奇异摄动问题的边界层和内层理论主要介绍常微分方程、泛函微分方程和偏微分方程的初值、边值问题的解所出现的初始层、边界层和内层现象.利用伸长变量、匹配原理、多重尺度、合成展开等方法构造问题的形式渐近解,以及引用极值原理、能量积分、先验估计、上下解理论和不动点原理等理论证明了相关渐近解的一致有效性.
200多个例题中包括了一些比较新鲜有趣的问题,作为教材的补充也选择了一些帮助理解基本概念、掌握基本方法的问题.书末给出两个附录:附录一给出了南京大学出版社出版的《数学分析教程》(许绍溥、宋国柱等编)一书中*章到第十九章的总习题及其解答;附录二介绍了南京大学硕士研究生入学考试的数学分析试题(1992~2003年)及其解答。
《二阶椭圆型偏微分方程(第二版修订版)》主要阐述二阶拟线性椭圆型偏微分方程的一般理论以及为此而必需的线性理论,着重于有界区域上的DirichIet问题。书中的内容源于作者在斯坦福大学为研究生课程所写的讲义,但大大超出了这些课程的范围,并包括了位势理论、泛函分析等预备性章节;第二版修订版增加了Nikolai Krylov的导数Holder估计的相关内容,这—估计提供了椭圆型(和抛物型)高维完全非线性方程的古典理论进一步发展的基本要素。《二阶椭圆型偏微分方程(第二版修订版)》是一本自封闭的严谨的教学参考书,适合相关专业的研究生和高年级本科生阅读,也可供其他科技工作人员参考。
A carefully prepared account of thebasic ideas in Fourier analysis and its applications to the studyof partial differential equations. The author succeeds to make hisexposition accessible to readers with a limited background, forexample, those not acquainted with the Lebesgue integral. Readersshould be familiar with calculus, linear algebra, and complexnumbers. At the same time, the author has managed to includediscussions of more advanced topics such as the Gibbs phenomenon,distributions, Sturm-Liouville theory, Cesaro summability andmulti-dimensional Fourier analysis, topics which one usually doesnot find in books at this level. A variety of worked examples andexercises will help the readers to apply their newly acquiredknowledge.
《抛物问题的伽辽金有限元方法(第2版)》由(瑞典)托姆著,主要内容:Thebasis of this work is my earlier text entitled Galerkin FiniteElement Methods for Parabolic Problems, Springer Lecture Notes inMathematics, No. 1054, from 1984. This has been out of print forseveral years, and I have felt a need and been encouraged bycolleagues and friends to publish an updated version. In doing so Ihave included most of the contents of the 14 chapters of theearlier work in an updated and revised form, and added four newchapters, on semigroup methods, on multistep schemes, on incompleteiterative solution of the linear algebraic systems at the timelevels, and on semilineax equations. The old chapters on fullydiscrete methods have been reworked by first treating the timediscretization of an abstract differential equation in a Hilbertspace setting, and the chapter on the discontinuous Galerkin methodhas been completely rewritten.
本书共分五章。 章论述非线性算子的一般性质,包括连续性、有界性、全连续性、可微性等,并给出了隐函数定理和反函数定理。 第二章建立拓扑度理论。不仅建立了重要的有限维空间连续映像的Brouwer度和Banach空间全连续场的Leray-Schauder度,而且论述了较常用的凝聚场的拓扑度和A—proper映像的广义拓扑度。 第三章将半序和拓扑度(不动点指数)相结合来研究非线性算子方程的正解,讨论了常用的凹算子和凸算子的正解及多解问题。 第四章主要证明强制半连续单调映像的满射性和强制多值极大单调映像的满射性。 第五章论述非线性问题中的变分方法,既包括古典的极值理论,也包括属于大范围变分学的Minimax原理和山路引理等。 书中包括了对于非线性积分方程、常微分方程以及二阶半线性椭圆型偏微分方程的应用。 本书可作为综
本书主要研究了非线性协整理论的非参数检验与估计两个领域,包括非线性存在性、混沌与分形特征、非线性非平稳检验及非线性协整检验与估计等;梳理了这两个领域的研究脉络和框架。对我国货币各变量序列,以及我国与国际股市指数序列应用所给出的非线性协整理论的非参数方法进行了非线性存在性检验、混沌与分形特征检验、存在非线性的非平稳检验以及非线性协整检验与估计,得出了较此前学者们应用线性协整理论相关方法更一般的结论。本书不仅可以丰富和完善协整关系模型的理论和方法,而且有助于决策者更准确地把握经济和金融变量之间的相互作用和演化关系,更好地制定经济和金融政策进行宏观调控。
本书介绍了现代数值近似技术的理论及实用知识,解释了它们的工作原理。同它的前几个版本一样,该书仍将重点放在近似技术的数值分析上,以便为读者今后的学习打下坚实的数值分析与科学计算基础。本书内容丰富、翔实,可以根据不同的学习对象和学习目的,选择、组织、串联相应的章节,形成侧重于理论或是侧重于实用的两种学习策略。书中的每个概念均以大量的例子说明,同时书中还包含2000多个习题,范围从方法、算法的基本应用到理论的归纳与扩展,涉及物理、计算机、生物、社会科学等多个不同的领域。通过这些实例,进一步说明在现实世界中,数值方法是如何被应用的。第七版新增了两个突出的部分,一是前承条件共轭梯度方法,为线性方程系统提供了更完备的解决方法;另一部分是同伦与连续方法,为非线性方程系统的近似求解提供了不
《非线性物理科学:离散和切换动力系统(英文版)》用一种清晰简明、独特的观点讨论非线性离散动力系统稳定性和分叉理论,并分析了离散动力系统中稳定性及其切换的复杂性。本书首先介绍了含多重特征根的线性离散系统的解析解和稳定性理论,给出了详细的离散非线性动力系统的稳定性和奇异性分类;然后通过众多例子展示离散动力系统中的混沌及其分形性,并应用正映射和负映射讨论了非线性离散动力系统完整动力学,包括其不动点和混沌的阴阳解。本书还系统地讨论了具有搬运跳跃律的切换系统稳定性,将其作为描述连续和离散混合系统一般的形式;并介绍了一种广义的符号动力学——映射动力学,通过此动力学讨论在边界不连续动力系统的擦边分叉以及奇异吸引子碎裂机理,以帮助读者更好地理解离散、切换不连续和边界不连续动力系统中的规