本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
《泛函分析(英文版)》在Princeton大学使用,同时在其它学校,比如UCLA等名校也在本科生教学中得到使用。其教学目的是,用统一的、联系的观点来把现代分析的“核心”内容教给本科生,力图使本科生的分析学课程能接上现代数学研究的脉络。
本书通过深入分析现有复杂决策问题的特征,在检索大量外资料,跟踪国际前沿技术的基础上,应用多学科交叉技术,将粗糙集理论引入经典的多属性决策方法中,并将管理学、人工智能、信息科学等知识相融合。在系统观点指导下,针对经典多属性决策方法中存在的严格假设问题,重点研究了粗糙集属性约简理论、粗集分类、奇异粗集等理论在经典的多属性决策理论与方法,最后经过模拟、试验和算例验证了该方的有效性,具有重要的理论意义和应用价值。 本书可作为高等院校运筹学、管理科学、信息科学和系统工程专业的研究生教材,也可作为相关领域研究人员、工程技术人员、管理干部、教师和学者的参考书。
This book is an abridged version of our two-volume opus Convex Analysis and Minimization Algorithms [18], about which we have received very positive feedback from users, readers, lecturers ever since it was published-by Springer-Verlag in 1993. Its pedagogical qualities were particularly appreciated, in the combination with a rather advanced technical material.
戴嘉尊编著的《微分方程数值解法(第2版21世纪高等学校教材)》包括常微分方程数值解法、抛物型方程的差分方法、椭圆型方程的差分方法、双曲型方程的差分方法、非线性双曲型守恒律方程的差分方法、有限元法简介等共6章,每章后面附有数量的习题供练习之用。《微分方程数值解法(第2版21世纪高等学校教材)》适合于数学类本科生“微分方程数值解法”课程教学之用,也适用于工科研究生及计算数学与应用数学教学与科研人员,并可供有关工程技术人员参考。
戴嘉尊编著的《微分方程数值解法(第2版21世纪高等学校教材)》包括常微分方程数值解法、抛物型方程的差分方法、椭圆型方程的差分方法、双曲型方程的差分方法、非线性双曲型守恒律方程的差分方法、有限元法简介等共6章,每章后面附有一定数量的习题供练习之用。《微分方程数值解法(第2版21世纪高等学校教材)》适合于数学类本科生“微分方程数值解法”课程教学之用,也适用于工科研究生及计算数学与应用数学教学与科研人员,并可供有关工程技术人员参考。
《新世纪高等学校教材·数学与应用数学系列教材:复变函数论》共分为六章,介绍了复数列、级数和辅角,用级数定义了指数函数等初等函数,证明了Euler公式,并利用它把复数的三角表示转化成书写简单的指数形式.包括:复变函数、复变函数的微分和积分、解析函数的级数理论等.
Elias M.Stein、RamiShakarchi所著的《复分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《实分析》也已影印出版。本书已被哈佛大学和加利福尼亚理工学院选为教材。
This book is an abridged version of our two-volume opus Convex Analysis and Minimization Algorithms [18], about which we have received very positive feedback from users, readers, lecturers ever since it was published-by Springer-Verlag in 1993. Its pedagogical qualities were particularly appreciated, in the combination with a rather advanced technical material.
《实分析》(英文版第3版)是一本的教材,主要分三部分:部分为实变函数论,第二部分为抽象空间,第三部分为一般测度与积分论。书中不仅包含数学定理和定义,而且还提出了挑战性的问题,以便读者更深入地理解书中的内容。《实分析》(英文版第3版)的题材是数学教学的共同基础,包含许多数学家的研究成果。
Elias M.Stein、RamiShakarchi所著的《复分析》由在国际上享有盛誉普林斯大林顿大学教授Stein等撰写而成,是一部为数学及相关专业大学二年级和三年级学生编写的教材,理论与实践并重。为了便于非数学专业的学生学习,全书内容简明、易懂,读者只需掌握微积分和线性代数知识。与本书相配套的教材《傅立叶分析导论》和《实分析》也已影印出版。本书已被哈佛大学和加利福尼亚理工学院选为教材。
This book is an abridged version of our two-volume opus Convex Analysis and Minimization Algorithms [18], about which we have received very positive feedback from users, readers, lecturers ever since it was published-by Springer-Verlag in 1993. Its pedagogical qualities were particularly appreciated, in the combination with a rather advanced technical material.
《泛函分析(英文版)》在Princeton大学使用,同时在其它学校,比如UCLA等名校也在本科生教学中得到使用。其教学目的是,用统一的、联系的观点来把现代分析的“核心”内容教给本科生,力图使本科生的分析学课程能接上现代数学研究的脉络。
本书强调严格性和基础性, 书中的材料从源头——数系的结构及集合论开始, 然后引向分析的基础(极限、级数、连续、微分、Riemann积分等), 再进入幂级数、多元微分学以及Fourier分析, 最后到达Lebesgue积分, 这些材料几乎完全是以具体的实直线和欧几里得空间为背景的。书中还包括关于数理逻辑和十进制系统的两个附录.课程的材料与习题紧密结合, 的是使学生能动地学习课程的材料, 并且进行严格的思考和严密的书面表达的实践。 本书适合已学过微积分的高年级本科生和研究生学习。
《实分析》(英文版第3版)是一本的教材,主要分三部分:部分为实变函数论,第二部分为抽象空间,第三部分为一般测度与积分论。书中不仅包含数学定理和定义,而且还提出了挑战性的问题,以便读者更深入地理解书中的内容。《实分析》(英文版第3版)的题材是数学教学的共同基础,包含许多数学家的研究成果。
泛函分析是分析数学中最“年轻”的分支,在各个领域均有着广泛应用。本书是泛函分析的经典教材。作为Rudin的分析学经典著作之一,本书秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理、Lamonosov不变子空间定理以及遍历定理等。另外,还适当增加了一些例子和习题。
泛函分析是分析数学中最“年轻”的分支,在各个领域均有着广泛应用。本书是泛函分析的经典教材。作为Rudin的分析学经典著作之一,本书秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理、Lamonosov不变子空间定理以及遍历定理等。另外,还适当增加了一些例子和习题。
泛函分析是分析数学中最“年轻”的分支,在各个领域均有着广泛应用。本书是泛函分析的经典教材。作为Rudin的分析学经典著作之一,本书秉承了内容精练、结构清晰的特点。第2版新增的内容有Kakutani不动点定理、Lamonosov不变子空间定理以及遍历定理等。另外,还适当增加了一些例子和习题。
本书主要介绍图像偏微分方程的数值解法。介绍了轮廓线匹配算法、图像匹配算法和基于扩散方程的保边界降噪声算法。最后还介绍了近年发展较快的水平集法。本书解说精辟、推理严密、叙述简洁。 本书可供大专院校图像处理和模式识别专业师生作教材使用,也可供相关专业人士在科研中作参考。