本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分. 第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题. 第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法. 第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相
本书以数学模型及计算为主线,围绕微分方程与反问题,介绍了数学建模与计算的理论、方法及应用。微分方程及反问题研究在计算科学与工程领域具有特别重要的意义,在大数据和人工智能快速发展的时代正扮演着理论创新与技术升级的核心角色且起着不可替代的作用。《BR》 本书首先介绍数学建模的理论与方法,特别是微分方程、积分方程与反问题、线性代数方程组、**化等模型,着重建模、计算与应用三方面;然后分别给出了大数据领域、图像处理与压缩感知领域中的建模与计算案例,供读者学习、研究参考。本书是新时代数学深度应用、新工科迅猛发展形势下的一本应用与计算数学书,具有交叉性、集成性、应用性特征,以激发读者活学数学、活用数学的思考与热情。
系统介绍有理逼近的基本理论和方法及其在工作中的应用.
作为此前出版的《非线性常微分方程边值问题》研究内容的后续进展,本书是作者十余年来在常微分方程和时滞微分方程周期轨道方面所作研究工作的总结.在介绍临界点理论和指标理论的基础上,对常用的指标理论和指标理论作出推广,提出和论证了Zn指标理论和Sn指标理论,拓展了应用范围.对不同类型的时滞微分方程通过选定相应的Hilbert空间,在其上给出自伴线性算子,构造特定的可微泛函,得出多个周期轨道的估计.对非自治型时滞微分方程的研究,是一个值得继续探索的方向.
《控制之美(卷1)——控制理论从传递函数到状态空间》涵盖了动态系统分析、经典控制理论与现代控制理论的核心基础内容。其中,经典控制理论以拉普拉斯变换为数学工具,通过传递函数分析系统的表现并进行控制器的设计;现代控制理论以状态空间方程为研究对象,以微分方程和线性代数为数学工具,从时域的角度分析系统的表现并设计系统的控制器。 本书在多个章节对比讲解了两种理论之间的区别与联系。本书共分为10章。第1章为绪论;第2、3章分别介绍使用传递函数和状态空间方程描述系统的方法;第4、5章使用这两种方法分析一阶系统与二阶系统的时域响应;第6章介绍系统稳定性的概念;第7、8章重点分析经典控制理论中的控制器设计方法,包含比例积分控制和根轨迹法;第9章介绍系统的频 率响应并与滤波器的设计相结合; 0章讨论现代控制理论中的控制器设
泛函分析是现代数学的一个重要分支,它不但具有高度的抽象性,而且具有高度的统一性和广泛的应用性。本书试图将抽象的泛函分析与一些具体的物理问题联系起来,内容涉及经典变分中的几个著名例子,线性泛函分析中一些基本定理,广义函数和Sobolev空间,泛函极值的一阶和二阶必要条件及充分条件,Ekeland变分原理及其推广和应用,Pontryagin**值原理及其应用,共轭凸函数理论及其应用,极小极大原理尤其是山路引理及其应用,具有Newton势的N(≥2)体问题的周期解,以及几个经典的不动点定理。
本书共十六章.内容比较独立的是章与第十章.前者涉及解析函数理论中的部分基本问题,后者讨论了T函数及相关函数的幂级数展开,以及与之有关的级数与积分.其余各章大体可分为三部分.第二章到第五章围绕无穷级数而展开.内容包括:一、由解析函数Taylor展开而演绎出的各种变型;二、将常微分方程的幂级数解法用于求解已知函数的幂级数展开;三、卷积型级数的M6bius反演问题.第六章至第九章的中心是应用留数定理计算定积分,包括从一些简单的积分出发而演绎出许多新的积分.特别是,笔者综合已有的弓I理,提出了一个新的引理;并在此基础上,建立了计算含三角函数无穷积分的新方法.第十一章至第十六章讨论的是积分变换,介绍了有关Fourier变换和Laplace变换的一些理论问题.书中还介绍了Mellin变换,它与Fourier变换或Laplace变换密切相关,是处理某
本书讲述了复变函数的经典理论。作者用易于理解的方式严密介绍基础理论,强调几何观点,避免了一些拓扑学难点。书中首先从拓扑上较简单的情形论证了柯西积分公式,并引出连续可微函数的基本性质。然后阐述共形映射、解析延拓、黎曼映射定理、黎曼面及其结构,以及闭黎曼面上的解析函数等。书中包含大量的图示和丰富的例子,并附有习题,可以帮助读者增强对课程的理解。 本书可作为高等院校理工科专业复分析的入门教材,也可作为更高级学习研究的参考书