《法兰西数学精品译丛:谱理论讲义(第2版)》是由J.迪斯米埃在20世纪70年代开设线性算子谱理论课程时手写油印的讲义翻译而来的在相当长的一段时期里,该讲义在法国被这一领域的所有学生认真反复阅读,也被教授这一课程的教师大量使用、在本书中,迪斯米埃以完整地陈述谱定理为核心目的,通过基本也是常用的一些例子让读者明白所引进的每一个概念、每一条定理,都是在后续内容中必不可少的,并娴熟地应用各种技巧对定理给出精确、简短而优雅的证明——这就是布尔巴基成员的作品。而本书中体系的严谨与清晰明了则是作者一贯的写作风格 《法兰西数学精品译丛:谱理论讲义(第2版)》可以作为研究生泛函分析基础课的教材,也可以作为大学本科高年级选修课教材,、对于非泛函方向的学生来说,《法兰西数学精品译丛:谱理论讲义(第2
本书主要介绍了三角函数的相关知识,并配有一定数量的习题供读者练习。本书共5章,分别介绍了三角恒等变换、三角函数的图象及性质、解斜三角形、三角不等式、三角法。 本书有如下特点:帮助学生夯实基础,通过知识精讲、典例剖析、归纳小结,落实基础知识;帮助学生培养逻辑推理能力,精选逻辑性强的综合题,启迪学生的思维,开阔学生的思路,落实数学思想方法的学习。引导学生关注数学应用、崇尚思维创新,从而走向成功。 本书适合对数学有浓厚兴趣的学生和对相关知识感兴趣的教师参考阅读。
《复变函数专题选讲》是复变函数专业基础内容的进一步发展,共分为9章,包含cauchy定理的推广、*模原理、整函数与亚纯函数、共形映射、解析开拓及riemann曲面初步、调和函数与dirichlet问题、 函数和b函数、椭圆函数、cauchy型积分。上列*后三项与复变函数的应用有密切联系,其他各项都是专业基础内容的进一步发展。它们在复变函数论的理论研究和应用中都有重要意义。 《复变函数专题选讲》可作为数学类高年级大学选修课及研究生必修课的参考书,也可供广大数学工作者和有关科研人员参考。
本书详细介绍了格罗斯问题的相关知识及内容,全书共分为15章,主要介绍了亚纯函数唯一性的格罗斯问题、具有公共原象的亚纯函数、亚纯函数的唯一性和格罗斯的一个问题、关于格罗斯的一个问题、亚纯函数的唯一性定理、涉及截断重数的亚纯映射的唯一性问题等内容,通过对本书的学习,读者可以充分理解并掌握格罗斯问题,并能够将其更好地应用到相关的理论研究中. 本书适合数学专业学生、教师及相关领域研究人员和数学爱好者参考阅读.
本书中附有“八大问题”供有兴趣的读者研究探讨。大学数学系的师生、中学数学教师和喜爱数学的高年级学生,均可读懂本书的绝大部分内容。本书是对“*值”、“曲线、曲面方程”、“解析法”等概念和方法进行深入发掘的结果,因此,对中学、大学的数学教学,有很高的参考价值。 本书通过建立多边形、组合图形和多面体的方程,实现对折边与组合图形进行解析研究的梦想。书中建立了很多的方程,给出了已知图形构建其*值方程和已知方程画出图形的一系列方法,并对方程给出了若干应用。
《泛函分析》介绍泛函分析的基础知识,包括距离空间与赋范空间、有界线性算子、Hilbert空间、有界线性算子的谱和拓扑线性空间。 《泛函分析》旨在提供一本教师易于使用、学生易于阅读的本科生教材。为此,《泛函分析》在内容编排上注重理论展开的条理性和清晰性,在文字叙述上力求可读性强,定理的证明过程较为详细。《泛函分析》的第5章不是本科生必须学习的内容,仅供读者需要时参考。《泛函分析》配备较多的习题,以备选用。《泛函分析》的末尾对大部分习题给出提示或解答要点,供读者参考。
无
The implicit function theorem is. along with its close cousinthe inverse func- tion theorem, one of the most important, and oneof the oldest, paradigms in modcrn mathemarics. One can see thegerm of the idea for the implicir func tion theorem in the writingsof Isaac Newton (1642-1727), and Gottfried Leib-niz's (1646-1716)work cxplicitty contains an instance of implicitdifferentiation. Whilc Joseph Louis Lagrange (1736-1813) found a theorcm that isessentially a version of the inverse function theorem, ic wasAugustin-Louis Cauchy (1789-1857) who approached the implicitfunction theorem with mathematical rigor and it is he who isgencrally acknowledgcd as the discovcrer of the theorem. InChap-ter 2, we will give details of the contributions of Newton,Lagrange, and Cauchy to the development of the implicit functiontheorem.
《同调论(第2版)》是一部代数拓扑领域的入门级书籍,特别强调同调理论基础和应用。具备abelian群和点集拓扑的基本知识完全读懂这《同调论(第2版)》。章既讲述奇异同调的本质,又介绍一些重要的应用。这样,学生可以很好的抓住材料的本质。紧接着讲述了接着空间、有限cw复杂度、eilenberg-steenrod定理、上同调积、流形、庞加莱对偶和不动点理论。通书运用大量的例子和图表,让表述尽可能的清楚。以基本概念为核心,一些*的案例尽可能避免。《同调论(第2版)》终目标是作为本科生教程或者自学教程。在第二版中进行了大量的扩展,增加了新的一章,包括覆盖定理,以及许多练习。理论方法再次证明了如何运用提出问题的方式近而产生基础群及其性质。目次:奇异同调理论;映射的接着空间;eilenberg-steenrod定理;覆盖定理;乘积;流形和庞加莱对偶性;不
本书内容包括复变函数和积分变换两部分及与复变函数和积分变换有关的数学实验。复变函数部分内容有:复数与复变函数及其应用,解析函数及其应用,复变函数的积分及其应用,复级数及其应用,留数及其应用 积分变换部分内容有:傅里叶积分变换及其应用、拉普拉斯变换及其应用和Z变换及其应用。本书每章都有专门的一节介绍该章知识在实际问题中的应用,向读者传授一套完整地、科学地解决实际问题的方法,使读者初步掌握用工程数学解决实际问题的能力;本书加入了用数学软件MATLAB做数学实验的内容,通过计算机模拟计算,加深读者对所学内容的理解,同时给出了用计算机处理实际问题的算例和程序 让读者初步掌握用MATLAB解决实际问题的方法,从而培养读者数学应用能力和科学计算能力。本书例题丰富,论证严谨,易教易学 每章后有主要内容简要
首先从*简单的园和三角函数说起,逐步过渡到椭圆积分,进而带领读者初识椭球积分。在完成了这*步的过渡后,数学上的深入稍稍放缓,话锋转向讨论椭圆和椭球形体里的几个具体的电磁学实例,并以矩量法的计算与之对比、相互印证,使读者始终是"接地气"的、始终站在自己的专业里学数学。在读者舒过一口气之后,作者又带领他们掀起了学习数学的第二个高潮,详细论述了椭球函数理论及其保角映射,*后又落实到椭球函数网络和滤波器等具体的电磁场问题上来。这样的安排,完全符合有关专业领域内高年级大学生和低年级研究生的思维方式和已有的知识结构。全书文字精炼、叙述清楚,是一本理想的工程数学读物。
在科技计算中,多元函数逼近理论已得到广泛的应用,其理论和研究的发展遇着重要的实际意义。本书主要叙述多元函数逼近理论的发展,内容包括:线性算子的逼近原理、多元差值、多元QeobwB逼近、多元样条逼近、多元非线性逼近,其中包括了作者的许多科研成果。
本书详细而全面地介绍了初等函数的相关概念、研究方法及初等函数趣题,并详细介绍了初等函数的各种性质、函数题常用的解题方法及函数题的一题多解,供读者参考.
实变函数作为学习近代分析数学的基础课程,其内容早已有了比较明确的陈述和成熟的体系。然而,从教学的角度审视,如何将其中丰富的内涵表现出来,切能比较顺畅的传递给初学者,还有许多事情可做。这次修订的工作,主要是对内容上进行一些调整。一是把一些难度过高的习题删去,增加一些 适应学生理解的习题。二是对一些过时的内容进行删减,增加一些新颖的、适合时代发展的内容。...............................................................................................
本书从复数与点,向量的关系出发讨论了复数的运算和性质。第二章,引入了复变函数的概念、极限、连续性和可导性以及本书的主要研究对象,推导出解析和可导的充要条件,然后举例介绍几类初等函数并探讨它们的解析性。第三章,讨论了复变函数的积分,然后介绍解析函数与调和函数的关系。第四章,研究了解析函数的级数表示法。第五章,介绍了特殊的奇点,并定义了孤立奇点的留数,从留数的观点重新计算复变函数的积分,另外介绍了留数定理在计算实积分中的应用。第六章和第七章分别介绍了傅里叶变换和拉普拉斯变换, 介绍了拉普拉斯变换在求解微分方程中的重要应用。