无
本书根据作者多年在中山大学主讲实变函数论的讲稿整理而成,主要关于测度论和积分理论,内容有集合与基数、测度、可测函数、积分、L2空间等.每一章都附有较多例题,介绍实变函数解题的典型方法与重要技巧.书中的习题都有解答或者提示,方便学生学习.本书一个重要特点是结合测度论的发展历史,对相关的数学家及其工作也作了简短介绍.
本书是在云南财经大学多次使用的微分方程讲义的基础上整理而成的。本书内容包括微分方程模型,常微分方程的基本概念,初等积分法,一阶常微分方程组,高阶线性常微分方程,偏微分方程的概念,线性偏微分方程的Adomian分解法,特征线法、达朗贝尔公式和分离变量法,布莱克-斯科尔斯方程,非线性偏微分方程的Adomian分解法,变分迭代法简介等。
本书深入浅出地引入多项式理想的Grobner基理论,给出Grobner基(特别是Grobner基的消元原理)在多元多项式方程(组)的求解、多项式理想结构性质、仿射代数结构性质、代数几何、域的代数扩张、整数优化以及图论等方面的一些基本应用,着力于引导读者认识多项式理想的Grobner基理论在代数结构+序结构+算法这个交叉领域平台上得以成功发展和有效应用的数学原理。
《中外物理学精品书系·经典系列5:特殊函数概论》较系统地讲述一些主要的特殊函数,如Г函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等,同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等,在各章之末还附有习题,习题中包含了一些有用的公式作为《中外物理学精品书系·经典系列5:特殊函数概论》正文的补充. 《中外物理学精品书系·经典系列5:特殊函数概论》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用.
1977年,德国Springer出版了《二阶椭圆偏微分方程》(Elliptic Partial Differential Equations of Second Order, D. Gilbarg, S. Trudinger)。20年之后的1996年,G. M. Lieberman撰写了《二阶抛物微分方程》,成为《二阶椭圆偏微分方程》的姊妹篇。几十年来,这两部书的均成为受读者欢迎的经典教科书。
《凸分析讲义——共轭函数及其相关函数》重点介绍了回收锥、凸函数的连续性、凸集的分离定理、凸函数的共轭函数及支撑函数、凸集的极及其相关内容。这一部分是分析约束优化问题理论性质尤其是对偶理论的基础工具。为了增强可读性,《凸分析讲义——共轭函数及其相关函数》将抽象的概念尝 简单的例子和直观的图像来表达,以期读者对《凸分析讲义——共轭函数及其相关函数》内容有 形象深刻的理解和把握。同时,将知识点与 化方法部分前沿研究内容进行有机结合,试图让读者看到这些基础理论和概念在前沿科学研究课题中的有机应用。
泛函分析是现代数学的一个重要分支,它不但具有高度的抽象性,而且具有高度的统一性和广泛的应用性。本书试图将抽象的泛函分析与一些具体的物理问题联系起来,内容涉及经典变分中的几个 例子,线性泛函分析中一些基本定理,广义函数和Sobolev空间,泛函极值的一阶和二阶必要条件及充分条件,Ekeland变分原理及其推广和应用,Pontryagin**值原理及其应用,共轭凸函数理论及其应用,极小极大原理尤其是山路引理及其应用,具有Newton势的N(≥2)体问题的周期解,以及几个经典的不动点定理。
本书为普林斯顿分析译丛中的第四册泛函分析,其内容分为8章,第1章介绍Lp空间和Banach空间,第2章过渡到调和分析中的Lp空间,第3章讨论分布:广义函数,第4章讲述Baire纲定理及其应用,第5章为概率论基础,第6章介绍Brownian运动引论,第7章为多复变引论专题,第8章Fourier分析中的振荡积分,全书展现了泛函分析理论的基本思想,特别地强调它们与调和分析的联系。 本书可作为数学专业高年级本科生或研究生的泛函分析教材,同时也可作为相关科研工作者的参考书。
《特殊函数概论/经典系列》较系统地讲述一些主要的特殊函数,如г函数、ζ函数、超几何函数、勒让德函数、合流超几何函数、贝塞耳函数、椭圆函数、椭球谐函数、马丢(Mathieu)函数等。同时也阐明一些在讨论特殊函数时常用的概念和理论,如关于函数的级数展开和无穷乘积展开,渐近展开,线性常微分方程的级数解法和积分解法等。在各章之末还附有习题,习题中包含了一些有用的公式作为本书正文的补充。 《特殊函数概论/经典系列》可供数学系、物理系的师生以及数学、物理和工程技术界的研究人员参考之用。本书由王竹溪、郭敦仁编著。