本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
为什么教科书里的微积分那么难懂?不要怕,这本简单、有趣的微积分入门书,帮你7天搞定!我们害怕微积分,是因为有一大堆抽象、难懂的概念、公式。其实,知道这些公式、概念是怎样创造出来的,你就能很容易理解掌握,再也不会再害怕!微积分到底有什么用?微分的结果是斜率,可以分析变化,股票、汇率与摄影都会用到;积分是导数的逆运算,目的在于找出变化的规律,求出面积!
本书阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,即可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
Banach空间中的常微分方程理论是近二三十年发展起来的一个新的数学分支,它把常微分方程理论和泛函分析理论结合起来,利用泛函分析方法研究Banach空间中的常微分方程。它的理论在无穷常微分方程组、临界点理论、偏微分方程、不动点定理等多方面都有广泛的应用。特别是,临界点理论中常用的最速下降流线,即以是Banach空间常微分程方程理论作基础。由于它的重要性,又比较新,故被列为我国自然科学基金重点资助的项目之一。在我国,研究Banach空间常微分方程理论的人很少,1985年,在第五届全国非线性泛函分析会议上,作者和孙经先副教授合作了《Banach空间中的常微分方程理论》综合报告,引起了许多人的兴趣。本书显然可作为综合性大学和高等师范大学有关专业的研究生教材,也可供有关教师和科技大工作者进行科研时参考。
《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》是《微积分之屠龙宝刀》的续集,内容从极座标、无穷级数的收敛、空间向量,到参数曲线、多变数函数、偏导数、多重积分、向量场。想换一种方式,理解这些令人头疼的课题吗?欢迎你拿起《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》,跟随三位作者的脚步,一同披荆斩棘,度过危机,不管你是理工科系的学生,还是学商业、国际贸易、经济,可能都有这样的微积分修课经验:无论多么专心听讲教授讲的内容你仍然听不懂。《微积分之倚天宝剑:打遍泰勒级数、多重积分、偏导数、向量微积分》试图告诉读者:“千万不要误以为听不懂全是自己的错!”
本书一部讲述代数曲线的入门书籍,可以作为一数学专业的教程,具备基本的微积分知识可以完全读懂这本书。通过分类实数上的不可约三次曲线和证明它们的点能够形成abelian群,使得椭圆曲线的讲述非常易于学习,书中包括了两曲线相交数上的bezout定理的简单证明。在这新的版本中深入研究了幂级数参化曲线,并且列举出了参化的两大用处,计数曲线的多相交和曲线对偶性的证明及其重叠。目次:曲线的相交;二次曲线;三次曲线;参化曲线。
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课题。
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课题。
本书是一部数学专业研究生的偏微分方程教程。其旨在让读者更好地了解偏微分方程的经典基础结果,为读者更深层次学习这方面的专著和教程提供现代理论观点。这是第二版,较版增加了不少练习,专门增加了一章讲述拟微分算子,增加了不少材料,内容更加丰富。书中的前五章讲述经典理论,如一阶方程,局部存在性定理,数学物理基础偏微分方程,适时地运用现代物理技巧解释长期研究的话题。最后三章专注于现代理论,索伯列夫空间,椭圆边界值问题和拟微分算子。
自从有了微积分,就有了微分表与积分表。有了具体的函数来求出其导数往往不是很困难,以致微分表常常不为人们所重视;而有了具体的函数来求其积分就不是这样了,有的也许可以容易地求出来,但大量的积分不是轻易求得出来的,于是积分表就一本一本不断地出版,从简单的到复杂的,在国外尤其是这样。由于自然科学和工程技术的不断发展,新的问题层出不穷,不断地提出各式各样的求积分的问题,于是过几年就会有新版的积分表出现,以供自然科学、工程技术和社会科学工作者使用。 我们参考了外尤其是国外一些新版的积分表和数学手册,如D.Zwillinger 主编的《Standard Mathematical Tableland Formulae》,J?J?图马和R.A?沃尔什主编的《工程数学手册》,I.S.Gradshteyn和I.M.Ryzhik主编的《Table of Integrals,Series,and Products》等,并广泛地征求了自然科学和工程
不管你是理工科系的学生,还是学商、国贸、经济,可能都有这样的微积分修课经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书作者试图告诉读者:“千万不要误以为听不懂全是自己的错!” 《微积分之屠龙宝刀》并非正式教科书,除了着重观念的解释之外,它还会告诉读者微积分该怎么教、好老师该怎么找、期末考试该怎么考,目的就是希望帮助读者更容易了解一般教科书里的精髓。
本书阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,即可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
不管你是理工科系的学生,还是学商、国贸、经济,可能都有这样的微积分修课经验:无论多么专心听讲,教授讲的内容你仍然听不懂。本书作者试图告诉读者:“千万不要误以为听不懂全是自己的错!” 《微积分之屠龙宝刀》并非正式教科书,除了着重观念的解释之外,它还会告诉读者微积分该怎么教、好老师该怎么找、期末考试该怎么考,目的就是希望帮助读者更容易了解一般教科书里的精髓。
本书第四版对2004年第三版的内容作了全面细致的修订,并补充了第三版出版以来不等式研究的新的重要成果,充分反映了20世纪以来,特别是20世纪90年代以来不等式理论和方法的进展。全书共分17章,包含了美国数学评论(MR)2000主题分类中所有关于不等式论题的40个三级分类项目,还包括了外历年来大、中学生各类数学竞赛和研究生入学考试中所出现的新的不等式,以及工程技术问题中常用的不等式,所收录的不等式增加到6千多个,第四版还总结了不等式的常用证法55种,提出了212个未解决或值得进一步研究的问题。由于不等式在数学各个领域和科学技术中都是不可缺少的基本工具,加上本书起点低,因而本书的读者面是非常广泛的,各种不同专业水平的读者,不论是大中学师生,数学研究者,还是工程技术人员,都可以从中找到各自感兴趣的有用材料和研究课题。
自从有了微积分,就有了微分表与积分表。有了具体的函数来求出其导数往往不是很困难,以致微分表常常不为人们所重视;而有了具体的函数来求其积分就不是这样了,有的也许可以容易地求出来,但大量的积分不是轻易求得出来的,于是积分表就一本一本不断地出版,从简单的到复杂的,在国外尤其是这样。由于自然科学和工程技术的不断发展,新的问题层出不穷,不断地提出各式各样的求积分的问题,于是过几年就会有新版的积分表出现,以供自然科学、工程技术和社会科学工作者使用。 我们参考了外尤其是国外一些新版的积分表和数学手册,如D.Zwillinger 主编的《Standard Mathematical Tableland Formulae》,J?J?图马和R.A?沃尔什主编的《工程数学手册》,I.S.Gradshteyn和I.M.Ryzhik主编的《Table of Integrals,Series,and Products》等,并广泛地征求了自然科学和工程
本书打破模式化和形式化的编书体系,在逻辑化渐进式的编书理念指引下,对当今教材的结构进行了全面的革新,以兴趣为主导、以逻辑为基础,让大家在轻松学习微积分的同时深刻理解其本质,掌握其基本方法。 本书从古代“割圆术”的极限讲起,依照历史发展的时间顺序和学科发展的逻辑顺序全面解读微积分。从而揭示出微积分的本质。讲解微积分的基本知识和方法,然后揭示出“无穷小”这个概念的重要性。在此基础上。深入讲解高等微积分的知识,如傅立叶级数、椭圆积分和场论等。 微积分是当今大学一年级学生几乎必修的基础课程,但是本书起点低。具有科普的性质,适合具有高中学历者自学:又因为本书有教材的特点。尽量做到对知识的全面和深入讲解,所以可以作为大学生的课外补充材料,尤其是针对那些对微积
自从有了微积分,就有了微分表与积分表。有了具体的函数来求出其导数往往不是很困难,以致微分表常常不为人们所重视;而有了具体的函数来求其积分就不是这样了,有的也许可以容易地求出来,但大量的积分不是轻易求得出来的,于是积分表就一本一本不断地出版,从简单的到复杂的,在国外尤其是这样。由于自然科学和工程技术的不断发展,新的问题层出不穷,不断地提出各式各样的求积分的问题,于是过几年就会有新版的积分表出现,以供自然科学、工程技术和社会科学工作者使用。 我们参考了外尤其是国外一些新版的积分表和数学手册,如D.Zwillinger 主编的《Standard Mathematical Tableland Formulae》,J?J?图马和R.A?沃尔什主编的《工程数学手册》,I.S.Gradshteyn和I.M.Ryzhik主编的《Table of Integrals,Series,and Products》等,并广泛地征求了自然科学和工程