本书是一部卓越的数学科学与教育著作。自第一版问世70多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。第一卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论(包括记号)的同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可作为各级各类高等学校的数学分析与高等数学课程的教学参考书,是数学分析教师极好的案头用书。
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。
本书是由数学天元基金和高等教育出版社共同推出的《俄罗斯数学教材选译》之一,是一部卓越的数学科学与教育著作。自第一版问世50多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和 师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。本书第一卷包括实变量一元与多元微分学及其 基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级 数与傅里叶变换。本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论的(包括记号)同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可供各级各类高等学
本书是一部卓越的数学科学与教育著作。自第一版问世70多年来,本书多次再版,至今仍被俄罗斯的综合大学以及技术和师范院校选作数学分析课程的基本教材之一,并被翻译成多种文字,在世界范围内广受欢迎。 本书所包括的主要内容是在20世纪初最后形成的现代数学分析的经典部分。本书第一卷包括实变量一元与多元微分学及其基本应用;第二卷研究黎曼积分理论与级数理论;第三卷研究多重积分、曲线积分、曲面积分、斯蒂尔吉斯积分、傅里叶级数与傅里叶变换。 本书的特点是:一、含有大量例题与应用实例;二、材料的叙述通俗、详细和准确;三、在极少使用集合论(包括记号)的同时保持了叙述的全部严格性,以便读者容易初步掌握本课程的内容。 本书可作为各级各类高等学校的数学分析与高等数学课程的教学参考书,是数学分析教师极好的案头用书。
微分几何讲义(修订版)
本书根据S.Kobayashi and K.Nomizu 所著的Foundations of Defferential Geometry (Wiley & Sons公司出版的Wiley经典文库丛书(1996 版)(第一卷)译出。本卷首先给出了若干必要的预备知识,主要包括微分流形、张量代数与张量分析、Lie群和纤维丛等。本卷的中心内容是联络理论,不仅论述了一般联络理论,还具体讲述了线性联络、仿射联络、黎曼联络等。然后讲述了曲率形式和空间形式以及各种空间变换。此外,本卷还给出了7个附录和11个注释,分别介绍了若干备查知识和历史背景材料。
本书系统讲述了偏微分方程一般理论的主要结果和研究方法。主要内容包括:实分析与泛函分析在Sobolev空间中的应用,整数次与分数次Sobolev空间的基本性质和基本技巧,如逼近理论、紧嵌入理论、迹定理、单位分解等基本理论以及局部化、平直化、光滑化和紧支化等技巧,二阶线性椭圆方程的各类边值问题弱解的存在唯一性、正则性、极值原理、Schauder理论等方面的主要结果以及泛函方法、特征值方法、差商方法等现代偏微分方程方法和De Giorgi迭代技巧,二阶线性抛物方程和二阶线性双曲方程的基本理论,弱解的存在唯一性、正则性,能量方法,Galerkin方法,Lions定理与发展方程以及线性抛物型方程的Schauder理论和Lp理论,一阶线性双曲型方程式的特征线方法,一阶线性双曲型方程组的基本概念和对称双曲系统的黏性消失法等。
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 《物理及工程中的分数维微积分(第1卷):数学基础及其理论》介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而又清晰的分析与介绍。
本书列入《非线性物理科学》,和Springer合作出版。作者Abdul-Majid Wazwaz为美国Saint Xavier大学教授。本书分成两部分:部分讨论了偏微分方程领域的一些*发展的方法,线性的、非线性的,齐次的、非齐次的。本部分的特点是介绍这些*的可行性方法而并不需要理解额外的抽象理论和概念。清晰且非常透彻地论述了初值和边界值问题,且含有众多精心选择的例子和练习。 第二部分揭示了孤波理论,通过提供各种材料使得本书是包含众多方法的孤波理论标准的书籍。本书的读者对象是应用数学、物理学和工程学的研究生及相关领域的研究人员。
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 《物理及工程中的分数维微积分(第Ⅱ卷应用英文版)(精)》由Vladimir V.Uchaikin著,本书的第Ⅰ卷介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而义清晰的分析与介绍。第Ⅱ卷是应用篇,讲述了分数维微积分在物理学中的实际的应用。在湍流与半导体、等离子与热力学、力学与量子光学、纳米物理学与天体物理学等学科应用方面,本书给读者展示一个全新的处理方式和新锐的视角。 本书适合于对概率和统计、数学建模和数值模拟方面感兴趣
本文集是为纪念浙大著名教授董光超80岁生日而在杭州召开的“偏微分方程及其应用国际会议”的文集。包括10-15篇由在偏微分方程及其应用方面的国际一流专家的文章。偏微分方程有着广泛的应用,诸如:微分几何、复几何、流体力学、金融数学等。本文集收集的文章对很多当今*数学研究分支的了全面系统的介绍。对研究生和研究人员是很好的参考。This volume of 15 contributed papers is a tribute to Professor Guangchang Dong on the occasion of his 80th birthday. These are survey or expository papers onrecent developments in the theory of partial differential equations and their applications in geometry, physics, finance, and other areas, which also reflect Professor Dong’s main research interests in his career. This volume is intended for researchers and graduate studentsto catch up recent developments in these areas.
求非线性问题的解析近似解最著名的方法是摄动法,已有数百年历史,但其有效性强烈依赖物理小参数,且不能保证摄动数的收敛,原则上仅适用于弱非线性问题。本书作者1992年提出的同伦分析方法,其有效性与是否存在物理小参数无关,能确保级数解收敛,克服了摄动法几乎所有的局限性,被国内外学者誉为该领域的一个重要里程碑。 本书分为上下两卷。上卷描述同伦分析方法的基本思想和相关理论;下卷给出基于同伦分析方法和数学软件Mathematica开发的软件包BVPh 1.0及其应用举例,以及求解非线性偏微分方程的一些典型例子。本书适合大学高年级本科生和研究生,以及应用数学、物理、力学、金融、工程等众多领域的科学家和研究人员阅读。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。