本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
本书涵盖了函数、函数的应用、导数、导数的应用、定积分、多元函数等微积分基本知识,内容全面,与经管、社会科学等结合,实用性强。 本书有以下特点:1.内容全面、灵活,适合工商管理、经济学、生命科学、社会学等专业的学生使用;2.本书提供了精心设计的大量练习题,按题目难度分出等级,便于教师根据学生程度选择适合的题目;3.本书将学生易犯错的地方、问题陷阱等做了特别提示,帮助学生提高学习技巧。
本书为翻译引进书,原版为数学史经典,厘清了微积分概念从古至今的发展历程。作者从古代(主要为古希腊)的无穷等概念引入,系统介绍了这些原始概念以及一系列相关探索如何发展成为17世纪的微积分,并阐述了微积分在之后严格化的发展脉络。从“引论”开始,到“古代的概念”“中世纪的贡献”,到“一个世纪的期待”“牛顿和莱布尼茨”“犹豫不决的时期”,再到“严密的详细阐述”,直至 终给出“结论”。本书材料丰富、阐释清晰,既有引人入胜的历史叙述,又有对思想源流及其进化、完善的深刻分析,值得每一位数学教师认真研读。
本书是引进的影印版。“苏联数学进展系列”由不同数学领域的一名或多名资深专家作为主编,内容包含来自俄罗斯的世界很好数学家的论文.此系列书籍在21卷之后作为“美国数学协会译丛2”的子系列出版,后更名为“苏
Banach空间中的常微分方程理论是近二三十年发展起来的一个新的数学分支,它把常微分方程理论和泛函分析理论结合起来,利用泛函分析方法研究Banach空间中的常微分方程。它的理论在无穷常微分方程组、临界点理论、偏微分方程、不动点定理等多方面都有广泛的应用。特别是,临界点理论中常用的最速下降流线,即以是Banach空间常微分程方程理论作基础。由于它的重要性,又比较新,故被列为我国自然科学基金重点资助的项目之一。在我国,研究Banach空间常微分方程理论的人很少,1985年,在第五届全国非线性泛函分析会议上,作者和孙经先副教授合作了《Banach空间中的常微分方程理论》综合报告,引起了许多人的兴趣。本书显然可作为综合性大学和高等师范大学有关专业的研究生教材,也可供有关教师和科技大工作者进行科研时参考。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
本书是论述不等式的理论与方法的一本专门若作,主要围绕着若干著名的经典不等式,从它们的证明方法,相互之间的联系以及它们的应用等几个方面加以系统地论述. 本书可供不等式研究工作者以及高等师范类院校数学教育专业的学生和数学爱好者参考阅读.
本书是一部 的介绍偏微分方程的入门书籍,可以作为研究生阶段学习的基石。本书详尽地介绍了偏微分方程理论的重要方面,并从数学分析的角度做了进一步的探讨。本书是第4版,增加了全新的一章讲述无解线性方程的Lewy例子。
In8yearsafterpublicationofthefirstversionofthiook,therapidlyprogressingfieldofinverseproblemswitnessedchangesandnewdevelopmentsPartsof艾赛科威专著的《偏微分方程中的逆问题(第2版)》wereusedatseveraluniversities.andmanycolleaguesandstudentsaswellasmyselfobservedseveralmisprintsandimprecisionsSomeoftheresearchproblemsfromthefirsteditionhavebeensolvedThiseditionservesthepurposesofreflectingthesechangesandmakingappropiatecorrections1hopethattheseadditionsandcorrectionsresultedinnottoomanynewerrorsandmisprintsChaptersIand2containonly2-3PagesofnewmateriaIJikeinsections1.5.25Chapter3orderequationsandincludedbound……