这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。
微分几何讲义(修订版)
本书根据S.Kobayashi and K.Nomizu 所著的Foundations of Defferential Geometry (Wiley & Sons公司出版的Wiley经典文库丛书(1996 版)(第一卷)译出。本卷首先给出了若干必要的预备知识,主要包括微分流形、张量代数与张量分析、Lie群和纤维丛等。本卷的中心内容是联络理论,不仅论述了一般联络理论,还具体讲述了线性联络、仿射联络、黎曼联络等。然后讲述了曲率形式和空间形式以及各种空间变换。此外,本卷还给出了7个附录和11个注释,分别介绍了若干备查知识和历史背景材料。
本书系统讲述了偏微分方程一般理论的主要结果和研究方法。主要内容包括:实分析与泛函分析在Sobolev空间中的应用,整数次与分数次Sobolev空间的基本性质和基本技巧,如逼近理论、紧嵌入理论、迹定理、单位分解等基本理论以及局部化、平直化、光滑化和紧支化等技巧,二阶线性椭圆方程的各类边值问题弱解的存在唯一性、正则性、极值原理、Schauder理论等方面的主要结果以及泛函方法、特征值方法、差商方法等现代偏微分方程方法和De Giorgi迭代技巧,二阶线性抛物方程和二阶线性双曲方程的基本理论,弱解的存在唯一性、正则性,能量方法,Galerkin方法,Lions定理与发展方程以及线性抛物型方程的Schauder理论和Lp理论,一阶线性双曲型方程式的特征线方法,一阶线性双曲型方程组的基本概念和对称双曲系统的黏性消失法等。
《流形上的层》编著者柏原正树。 层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文版)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
高等数学是大学理工科及经济管理类专业的重要基础课,是培养学生形象思维、抽象思维、创造性思维的重要园地。 本书具有以下特点:广泛使用表格法,使有关内容、解题方法和技巧一目了然;从浩瀚的题海中归纳、总结出的题型解法,对同学们解题具有很大的指导作用;用系列专题分析对教材的重点、难点进行了诠释,对同学们掌握这方面知识起到事半功倍的效果。 本书是针对考研、参加数学竞赛的同学撰写的,对在读的本科生、专科生及数学教师同仁也具有很高的参考价值。
本书是大学数学系列创新教材之一,内容主要包括:空间解析几何,空间理论初步与矢量值函数微积分, 多元函数微分学,重积分,曲线积分与曲面积分,无穷级数.本书风格独特、特点鲜明、内容丰富、例题典型.本书主要是基于 大学强基计划实验班、新工科专业一年级工科学生实验班或提高班,加强厚实的数学基础,加强数学思想方法和应用数学能力,强化逻辑思维能力的培养而编写的. 本书可作为研究型大学理工科学生一年级 学期的数学课程教材或者教学参考书,同时也可作为研究生入学考试中高等数学科目的复习资料.
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 《物理及工程中的分数维微积分(第1卷):数学基础及其理论》介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而又清晰的分析与介绍。
本书讲述了一种理解和学习微积分的新思路。书中通过探索微积分发展历程背后的数学动机,展现了这一数学基本工具的魅力。作者根据自己研究和教授微积分的丰富经验,结合多年从事中学和大学数学教育的心得体会,对传统的微积分教学方式,即大多按照从极限、微分、积分到级数的顺序进行学习的方法提出了异议,探讨了一种 有趣、 易被接受和理解的学习方法。作者写过不少富有启发意义的微积分教材,此次利用自己在教学与研究方面的特长,写成了这本内容丰富、风格有趣的“小书”。本书适合中学以上水平的数学爱好者、学生和教师阅读。
本书系统介绍偏微分方向的基本概念及其应用,主要内容包括热传导方程、分离变量法、傅里叶级数、施图姆一刘维尔特征值问题、偏微分方程的有限差分数值法、非齐次问题、定常问题的格式函数、无穷域问题、波动方程和热传导方程的格林函数、线性和拟线性波动方程的特征线法以及偏微分方程的拉普拉斯变换解法等。 本书注重应用、内容广泛、层次清晰,适合作为高等院校理工科非数字专业高年级本科生或研究生数学物理方程课程的教材或教学参考书,还可以作为数学专业同类课程的参考书。
本书介绍了微分拓扑、微分几何以及微分方程的基本概念。本书的基本思想源于作者早期的《微分和黎曼流形》,但重点却从流形的一般理论转移到微分几何,增加了不少新的章节。这些新的知识为Banach和Hilbert空间上的无限维流形做准备,但一点都不觉得多余,而优美的证明也让读者受益不浅。在有限维的例子中,讨论了高维微分形式,继而介绍了Stokes定理和一些在微分和黎曼情形下的应用。给出了Laplacian基本公式,展示了其在浸入和浸没中的特征。书中讲述了该领域的一些主要基本理论,如:微分方程的存在定理、性、光滑定理和向量域流,包括子流形管状邻域的存在性的向量丛基本理论,微积分形式,包括经典2-形式的辛流形基本观点,黎曼和伪黎曼流形协变导数以及其在指数映射中的应用,Cartan-Hadamard定理和变分微积分基本定理。目次:(部分)一般微分方
微分方程问题是工程和应用数学领域的重要问题。本书是作者多年教学经验的总结,示例丰富、内容全面、条理清晰。在编写的过程中,作者一直遵循便于学生理解和记忆的原则,所以本书的内容没有采用过于理论化的方式,而是以直观、易读的方式表述。本书对传统的教学方式和教学内容的各个方面都进行了革新,不仅内容更加吸引读者,同时加强理论与应用相结合,精心设计了三个项目模型,讲解微分方程的实际应用。
本书全面系统地论述微分方程的分析力学方法,包括微分方程的力学化、降阶法、Hamilton-Jacobi方法、Poisson方法、Noether方法、Hojman方法、场方法、势积分方法、共形不变性、Jacobi终乘子、Lagrange方法与Birkhoff方法、力学化与稳定性等。 本书可作为高等学校力学、数学、物理学,以及工程专业高年级本科生和研究生的教学参考书,亦可供有关教师、力学工作者和科技人员参考。
人工边界方法是求解无界区域上偏微方程(组)数值解的一个重要和有效的方法。人工边界方法的核心问题是在人工边界上如何对已知的问题找出问题的解满足的准确(或者高精度近似)的边界条件。借助于人工边界方法,我们可将无界区域上的问题简化为有界区域上的问题进行数值计算。本书系统地介绍了人工边界方法的计算格式及其理论基础。本书可以作为科学与工程计算专业研究生课程的教材,亦可以作为科学与工程计算专业科学技术人员的参考书。
本书系统地介绍概率论、鞅和随机积分及随机微分方程的基本理论.内容包括:测度与积分,独立性,Radon Nikodym定理和条件数学期望等概率论的基础知识;停时、离散鞅和连续鞅的基本内容;鞅和连续局部半鞅随机积分的一般理论及It型随机微分方程的初步内容.阅读本书只需要读者具有初等概率论的知识,而不需要具备测度论的知识.