本书通过图解的形式,在逻辑上穿针引线,讲解了大学公共课"高等数学(微积分) 中与单变量函数相关知识点,也就是经典教材《高等数学》上册中的绝大多数知识点。这些知识点是相关专业的在校、考研学生必须掌握的,也是相关从业人员深造所应的。 本书围绕着"线性相似 ,讲解了极限、导数、微分、中值定理、洛必达法则、泰勒公式、极值、最值、定积分、牛顿莱布尼茨公式、微分方程求解等知识,逻辑上层层递进,再辅以精心挑选的各种例题、生活案例等,大大降低了学习门槛。
微分几何讲义(修订版)
这是一本教读者微积分轻松入门的读物,也是一本轻松简单适合自学的书。本书语言轻松幽默,通过大量贴切具体的图形图像尽可能生动地介绍微积分各个主题概念的由来,将中学数学与高等数学完美衔接,中间穿插数学史还原数学思想的产生思路,还有常用的高等数学符号趣谈加深读者学习印象,了解微积分发展的来龙去脉。作者总结多年微积分教学经验,用尽可能浅显易懂的语言,总结学习方法、归纳实用规律,指出常见错误和学生学习盲点,提供详细的解题技巧,中间还穿插一题多解拓宽视野,助力读者轻松快乐地从更高角度掌握微积分具体知识点,让读者对微积分有比较清楚的认知。特别地,本书对中国古代数学和古代数学思想多有介绍,让读者在轻松入门微积分的过程中也能体会到中国古代先哲对数学的贡献。
《流形上的层》编著者柏原正树。 层论是代数拓扑、代数几何和偏微分方程的交叉形成得一个很现代,很活跃的领域。《流形上的层(英文版)》从层论的基础讲起,强调微局部观点。包括了许多有趣的观点,写作风格清晰明了,将数学的这个全新,庞大的分支展现给读者。
阿德里安·班纳著的《普林斯顿微积分读本》阐述了求解微积分的技巧,详细讲解了微积分基础、极限、连续、微分、导数的应用、积分、无穷级数、泰勒级数与幂级数等内容,旨在教会读者如何思考问题从而找到解题所需的知识点,着重训练大家自己解答问题的能力。 本书适用于大学低年级学生、高中高年级学生、想学习微积分的数学爱好者以及广大数学教师,既可作为教材、习题集,也可作为学习指南,同时还有利于教师备课。
自动微分方法是计算函数导数的有效工具.传统观念认为,计算H元函数的一个偏导数所需要的计算量与计算该函数的一个函数值的计算量大致相当.因此,计算,z元函数的梯度(,z个偏导数),所需计算量相当于函数值计算量的H倍.通常的方法,如数值微分(差商近似)和符号微分,都是如此.然而自动微分颠覆了这一传统观念.它计算函数梯度的计算量只相当于计算函数本身的数倍,而与自变量个数n无关.这一令人吃惊的结果,激发了人们对自动微分的强烈兴趣.近二十年来,自动微分已成为国际上人们关注的热点,但在国内的研究依然不足.据作者所知,本书是国内第一本对自动微分方法及其在最优化中的应用进行介绍和论述的书籍.本书由浅人深,系统地介绍自动微分的基本理论、算法设计和实现的软件工具,包括低阶和高阶微分方法.作为应用范例,
本书介绍了常微分方程理论中一些的基础知识,内容包括常微分方程的初等积分法、解的存在**性、解关于初值和参数的连续依赖性和连续可微性、解析微分方程解析解的存在性及其应用、微分方程组的可积理论及其在求解偏微分方程中的应用、常系数线性微分方程和微分方程组的解法及其在平面微分方程组局部结构研究上的应用、变系数线性微分方程组的Floquet理论、Sturm-Liouville边值问题及其在波动方程和热传导方程求解中的应用、微分方程解的稳定性判定、极限环存在性的基础知识,并简要介绍了结构稳定性和分支理论的基础知识。书中还介绍了如何利用Mathematica软件求解微分方程和作平面微分系统的相图。书末给出Ascoli-Arzelà引理的初等证明和实矩阵对数存在性的证明。
本书系统讲述了偏微分方程一般理论的主要结果和研究方法。主要内容包括:实分析与泛函分析在Sobolev空间中的应用,整数次与分数次Sobolev空间的基本性质和基本技巧,如逼近理论、紧嵌入理论、迹定理、单位分解等基本理论以及局部化、平直化、光滑化和紧支化等技巧,二阶线性椭圆方程的各类边值问题弱解的存在唯一性、正则性、极值原理、Schauder理论等方面的主要结果以及泛函方法、特征值方法、差商方法等现代偏微分方程方法和De Giorgi迭代技巧,二阶线性抛物方程和二阶线性双曲方程的基本理论,弱解的存在唯一性、正则性,能量方法,Galerkin方法,Lions定理与发展方程以及线性抛物型方程的Schauder理论和Lp理论,一阶线性双曲型方程式的特征线方法,一阶线性双曲型方程组的基本概念和对称双曲系统的黏性消失法等。
本书为日本数学家小平邦彦晚年创作的经典微积分著作,有别于一般的微积分教科书,本书突出“严密”与“直观”的结合,重视数学中的“和谐”与“美感”,讲解新颖别致、自成体系,论证清晰详尽、环环相扣,行文深入浅出、流畅易读,从原理、思想到方法、应用,处处体现了小平邦彦的深厚功力与广阔视野。作者着眼数学分析的深处,结合自身独到的思考与理解,从严谨的实数理论出发思谋微积分,通过巧妙引导,启发读者自主思考,提升对微积分的领悟理解程度。 本书是小平邦彦为后人留下的一份重要文化财富,不仅值得数学专业人士研读,对于需要微积分知识的其他理工科学生和专业人员也具有深刻启示。
微积分是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。它是数学的一个基础学科。内容主要包括极限、微分学、积分学及其应用。微分学包括求导数的运算,是一套关于变化率的理论。它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。《Barron's AP微积分》(作者博克、霍基特)是关于介绍微积分的专著。
本书为海外优秀数学类教材系列丛书之一,从Thomson Learning出版公司引进,本教材2003年全球发行约40余万册,在美国,占领了50%-80%的微积分教材市场,其用户包括耶鲁大学等名牌院校及众多一般院校600多所。 本书历经多年教学实践检验,内容翔实,叙述准确、对每个重要专题,均用语言地、代数地、数值地、图像地予以陈述。作者及其助手花费了三年时间,在各种媒体中寻找了能反映应用微积分的教学实例,并把它们编入了教材。因此,本书例、习题贴近生活实际,能充分调动学生学习的兴趣,此外。本书语言朴实、流畅.可读性强,比较适合非英语国家的学生阅读。 值的一提的是,本书较好地利用了科技。随书附赠两张CD-ROM,一张称为“感受微积分”,提供了一个实验环境,如同一个无声的老师,用探索、发现式的方法逐步引导学生分析并解决
本书全面地介绍了矢量和矩阵、矢量分析以及偏微分方程。本书不仅介绍了理论知识,还涉及到数值方法。全书共分为10章。前两章介绍了线性代数和偏微分。第3章介绍了散度、旋度和一些基本的恒等式,并简要介绍了直角坐标,后的几节中还介绍了n维空间中的张量。其余的章节则分别介绍了积分、无穷级数、解析函数、线性系统以及偏微分方程等。书中的定义都有明确标示,所有的重要结果都作为定理以公式的形式给出。书中提供了大量的习题,并给出了答案。此外,本书还提供了大量的参考文献,并在每章的末尾给出了推荐阅读的书目。 本书的读者应具有大学低年级的微积分学基础。本书适合作为高等微积分学和实解析等课程的研究生或高年级本科生双语教学的教材和课后参考书,也可供有关的研究人员参考。
本书旨在介绍非线性微分方程研究的主要内容、典型方法和*成果,其中包括作者近年的一些研究工作。本书系统地阐述了非线性常微分方程的基本理论、几何理论、稳定性理论、振动理论与分支理论等,还分别介绍了非线性泛函微分方程及非线性脉冲微分方程的相应理论。本书致力于核心概念的引入、基本定理的阐述、思想方法的揭示,以及非线性微分方程在现代科技领域中的应用。 本书可作为高等院校数学系、应用数学系及控制、管理、工程、医学等专业的大学生、研究生的教材或参考书,也可供相关教师及科研人员参考。
本书系统介绍了脉冲微分方程的有关理论及其在生命科学中的重要应用.全书分为两部分:部分主要介绍脉冲微分系统基本理论、脉冲微分系统稳定性以及周期脉冲微分系统;第二部分主要介绍脉冲种群动力系统、具有脉冲效应的传染病动力学模型和具有脉冲输入和输出的微生物模型。 本书试图为读者进一步了解脉冲生物动力系统的研究方法、研究动态和发展趋势提供*的参考.本书内容充实、论述严谨、方法实用,既能使读者尽快了解和掌握脉冲微分方程的基本理论,又能将有一定专业知识基础的读者带到脉冲生物动力系统研究的前沿。 本书适合高等院校或科研机构数学和生物及相关专业的高年级本科生、研究生、教师和研究人员阅读参考。
本书为数学、工程和理科等专业设计,包括一元微积分和多元微积分两部分。全书包括十五章和三个附录,用简单、扼要而且生动的语言向读者阐明了微积分学中的基本思想,详细介绍了微积分学中的基本概念和知识以及分析解决问题的方法。本书每一节都配有大量富有创意的、涉猎广泛的高质量习题。为进一步帮助读者学习,本书的电子书(ebook)中有许多交互式图像,这些图像可以用来揭示许多难于表达的概念。此外,在与本书配套的《教师资源指南》(Itructor'sResource Guide)和《试题库》(Test Bank)中配有大量的测验题、测试项目、课程支持以及指导课题等。《微积分》既可以作为高等院校微积分课程的双语教材和教师参考书,也可以作为国际高中AP课程或国际培训所需要的微积分教材。
本书是本科生的微积分教学用书,主要内容为:牛顿运动学基本定律(开篇),向量代数,天体力学简介,线性变换,微分形式和微分演算,隐函数反函数定理,重积分演算,曲线曲面积分,微积分基本定理,经典场论基本定理,爱因斯坦狭义相对论简介。本书特别注意数学与物理、力学等自然科学的内在联系和应用。作者在理念导引、内容选择、程度深浅、适用范围等方面都有相当周密的考虑。从我们国内重点大学的教学角度看,本书的难易程度与物理、力学和电类专业数学课的微积分相当,而思想内容则要深刻和生动些,因此适于用作这些专业本科生的教科书或学习参考书。
人工边界方法是求解无界区域上偏微方程(组)数值解的一个重要和有效的方法。人工边界方法的核心问题是在人工边界上如何对已知的问题找出问题的解满足的准确(或者高精度近似)的边界条件。借助于人工边界方法,我们可将无界区域上的问题简化为有界区域上的问题进行数值计算。本书系统地介绍了人工边界方法的计算格式及其理论基础。本书可以作为科学与工程计算专业研究生课程的教材,亦可以作为科学与工程计算专业科学技术人员的参考书。
一个运动质点位置函数的一阶导数表示速度,二阶导数表示加速度,那么分数阶导数的物理意义又是什么呢?分数阶导数是因何而产生,它对现代分析学在物理学的应用产生什么冲击,在将来又有什么发展?《物理及工程中的分数维微积分》二卷本将为你提供一个详细诠释。 《物理及工程中的分数维微积分(第Ⅱ卷应用英文版)(精)》由Vladimir V.Uchaikin著,本书的第Ⅰ卷介绍分数维微积分的数学基础和相应的理论,为这个现代分析学中的重要分支提供了详细而义清晰的分析与介绍。第Ⅱ卷是应用篇,讲述了分数维微积分在物理学中的实际的应用。在湍流与半导体、等离子与热力学、力学与量子光学、纳米物理学与天体物理学等学科应用方面,本书给读者展示一个全新的处理方式和新锐的视角。 本书适合于对概率和统计、数学建模和数值模拟方面感兴趣