许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
希尔伯特在《几何基础》一书中,给出了完备的欧几里得几何公理体系,奠定了现代公理化方法的基础。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(上卷)(基础篇)(直线型)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(上卷)(基础篇)(直线型)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
笛卡尔(1596-1690)创立的解析几何的诞生则被称为数学史上的伟大转折。1637年笛卡尔发表了他的名著《方法论》,《几何》是当时该书的三个附录之一。后世的数学家和数学史学家都把笛卡尔的《几何学》作为解析几何的起点。笛卡尔的《几何学》共分三卷,一卷讨论尺规作图;第二卷是曲线的性质;第三卷是立体和"超立体"的作图,但它实际是代数问题,探讨方程的根的性质。从笛卡尔的《几何学》中可以看出,笛卡尔的中心思想是建立起一种"普遍"的数学,把算术、代数、几何统一起来。他设想,把任何数学问题化为一个代数问题,在把任何代数问题归结到去解一个方程式。
平面几何是一门具有特殊魅力的学科,主要是训练人的理性思维的。《平面几何天天练(下卷)(提高篇)》以天天练为题,在每天的练习中,突出重点,使学生在练习中学会并吃透平面几何知识。 《平面几何天天练(下卷)(提高篇)》适合初、高中师生学习参考,以及专业人员研究、使用和收藏。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
云非圆球,山非圆锥,闪电不走直线.大自然形状的复杂性有不同的种类,不仅仅是程度上的不同.为了描写这些形状,伯努瓦?B.芒德布罗设计和发展了一种新的几何学??分形几何学.他的工作对本书论及的许多不同的领域都很重要.现在,这样的领域因许多积极的研究者而大为扩充,芒德布罗展示了分形几何学的根源及其新应用的深入概述.本书的以前几个版本受到高度评价,但这一版有更广泛和深入的覆盖范围,以及更多插图.
本书(上册)共10章。前5章讲授微分几何入门知识,第6章以此为工具剖析狭义相对论,第7~10章介绍广义相对论的基本内容。本书强调低起点(大学物理系本科2~3年级水平),力求化难为易,深入浅出,为降低难度采取了多种措施。
《几何原本(建立空间秩序最久远的方案之书全新修订本)》是古希腊数学家欧几里得的一部不朽著作。集古希腊数学的成果和精神于一书。 它既是数学巨著。又极富哲学精神。并第一次完成了人类对空间的认识。该书自问世之日起,在长达两千多年的时间里。历经多次翻译和修订。自1482年第一个印刷本出版,至今已有一千多种不同的版本。流传甚广。 《几何原本》(全新修订本)收录了原著13卷全部内容,包含了5条公理、5条公设、23个定义和467个命题。即先提出公理、公设和定义。再由简到繁予以证明。并在此基础上形成了欧氏几何学体系。欧几里得这一演绎推理,后来成了用以建立知识体系的严格方式。这种严格思维范式的确立。对人类知识发展和形成的影响尤为巨大。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结自然界中的分形行为,用实例概述了分形图形、分形维数、分形模拟技术、分形图像编码压缩技术等在自然科学、工程技术、社会经济和文化艺术等领域中的应用成果。
德国数学家尤尔根?约斯特的著作Bernhard Riemann Ueber die Hypothesen,welche der Geometrie zu Grunde liegen, 以一个微分几何学家的独特视角, 将黎曼几何学思想置于更为宽广的背景??哲学、物理学以及几何学??加以考察, 并将黎曼的推理置于他的追随者基于他的开创性思想所获得的更普遍和更系统的视角进行研究. 作者遵循西方数学史家所主张的数学史研究方法论之“接受史”研究范式, 考察了从亚里士多德到牛顿的物理学中的空间观念、康德的空间哲学, 以及非欧几何学发展的历史, 同时还用现代数学的观点对黎曼关于几何学基础的假设文本中所涉及的现代数学概念予以阐释, 探究黎曼几何学与现代数学和理论物理的深刻联系.
本书中册包含4章(第11~14章)和6个附录(附录B~G)。第11~13章依次介绍时空的整体因果结构、渐近平直时空和Kerr-Newman黑洞,第14章详细讲述与参考系有关的各种问题,包括时空的3+1分解。附录B和C分别简介量子力学的数学基础和几何相,附录D和E分别介绍能量条件和奇性定理,附录F讲述微分几何很重要的Frobenius定理,附录G则用微分几何语言比较详细地讨论了李群和李代数的知识,并专辟一节介绍对物理学特别重要的洛伦兹群和洛伦兹代数。本册仍然贯彻上册深入浅出的写作风格,为降低读者阅读难度采取了多种措施。
本书与初中、高中数学竞赛大纲和新编数学教材同步配套,相应地分为若干章节,每个章节都精选典型例题,进行详细讲解,还编写了课外习题,供学生练习,便于学习者了解数学竞赛中平面几何内容的各项要求.本书选材于全国各地历年中考压轴几何题,各届初 中、高中数学竞赛几何题以及经典的几何问题,从多家数学网站、论坛、贴吧、数学群、公众号等数万道几何题中,经过精选、分析、分类、归纳、总结,形成具有集系统性数理思维训练 和实战演练于一体的培优教程 本书适用于参加初中、高中数学竞赛的学生学习和训练,对参加大学自主招生、高考 的学生及初中、高中、大学数学教师也有一定的参考价值
本书是XYZ Press已出版的两本几何书籍,即《106个几何问题:来自Awe-someMath夏季课程》和《107个几何问题:来自Awe-someMath全年课程》的非正式续篇。本书以这两本书的内容为背景,可作为几何学家以及备战高难度国际数学奥林匹克竞赛(IMO)的学生们使用的习题集。
内容简介:本书分上、下篇.上篇分为15章,介绍了22种平面几何证明方法,涵盖了求解平面几何问题常用方法和技巧.下篇介绍了13类问题的各种证明思路.本书在归纳、总结平面几何概念、定理、公式的基础上,更贴近数学完整的命题方向、命题内容,适合初、高中学生尤其是数学竞赛选手和初、高中数学教师及中学数学奥林匹克教练员使用,也可作为高等师范院校教育学院、教师进修学院数学专业及数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书.
本书简要介绍经典信息几何与矩阵信息几何的基本内容及其应用.全书共八章:第1章概述信息的发展历史;第2章简要介绍作为信息几何理论基础的微分几何的基本内容,没有涉及太多复杂的定义;第3章介绍经典信息的基本内容;第4章介绍矩阵信息几何,着重介绍相关的李群、李代数以及一般线性群的重要子群和子流形的性质,而且介绍各种流形上的自然梯度算法;第5~7章介绍经典信息几何的应用;第8章介绍矩阵信息几何的应用.
波拉索洛夫编著的《俄罗斯立体几何问题集》提 供了俄罗斯在中学,其中包括在专门化的学校学习的 几乎所有立体几何的问题及 各题的提示。 本书适用于大学、中学师生和数学奥林匹克选手 及教练员参考阅读。
内容简介:本书分上、下篇,以66个专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。全书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师,以及数学奥林匹克教练员使用,也可作为高等师范院校数学教育专业以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书。
内容简介:本书从14个方面介绍了各类范例200余道一题多证(解).主要是线段度量、角度度量、平行与垂直、相切、直线共点与点共直线、点共圆与圆共点、线段比例式及特殊图形的判定与特殊点的性质等方面的范例本书中的每一道范例都呈现出了各种情形的证明和引人深思的技巧. 本书内容适合初高中学生,尤其是数学竞赛选手和初、高中数学教师及奥林匹克教练员使用,也可作为高等师范院校数学教育专业及教师进修或培训班的数学教育方向开设的 竞赛数学 或 初等数学研究 等课程的数学参考书.
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.