德国数学家尤尔根?约斯特的著作Bernhard Riemann Ueber die Hypothesen,welche der Geometrie zu Grunde liegen, 以一个微分几何学家的独特视角, 将黎曼几何学思想置于更为宽广的背景??哲学、物理学以及几何学??加以考察, 并将黎曼的推理置于他的追随者基于他的开创性思想所获得的更普遍和更系统的视角进行研究. 作者遵循西方数学史家所主张的数学史研究方法论之“接受史”研究范式, 考察了从亚里士多德到牛顿的物理学中的空间观念、康德的空间哲学, 以及非欧几何学发展的历史, 同时还用现代数学的观点对黎曼关于几何学基础的假设文本中所涉及的现代数学概念予以阐释, 探究黎曼几何学与现代数学和理论物理的深刻联系.
《现代几何学 方法与应用》是莫斯科大学数学力学系对几何课程现代化改革的成果,作者之一的诺维可夫是1970年菲尔兹奖和2005年沃尔夫奖得主。全书力求以直观的和物理的视角阐述,是一本难得的现代几何方面的好书。内容包括张量分析、曲线和曲面几何、一维和高维变分法(一卷),微分流形的拓扑和几何(第二卷),以及同调与上同调理论(第三卷)。
本书简要介绍经典信息几何与矩阵信息几何的基本内容及其应用.全书共八章:第1章概述信息的发展历史;第2章简要介绍作为信息几何理论基础的微分几何的基本内容,没有涉及太多复杂的定义;第3章介绍经典信息的基本内容;第4章介绍矩阵信息几何,着重介绍相关的李群、李代数以及一般线性群的重要子群和子流形的性质,而且介绍各种流形上的自然梯度算法;第5~7章介绍经典信息几何的应用;第8章介绍矩阵信息几何的应用.
本书为 六宫变型数独 系列的*本,系统地介绍了六宫对角线的解法。在六宫对角线的解法中,*次以出版的形式,清晰定义了共同影响的解题思路。本书选择常见的题型,通过典型的例题,详细讲解每一步的思考方法,手把手教读者如何一步步分析解决各类题目。《BR》 本书150道练习题,按照由浅入深、由易至难的顺序编写。有些题目难度甚至比一般的比赛题目更难一些。无论这些题目难易程度如何,都是可以用逻辑推导出来的。
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
几何新方法和新体系第二版张景中著北京内容简介本书分上下两篇.上篇通俗地阐述了作者所开创的几何解题的“消点法”.用这个方法可以机械地判定所谓“等式型可构造几何命题”的真假.命题成立时还能够产生人容易检验和理解的证明,即可读证明.书中先引入作者所发展的系统面积方法的两个基本工具,即共边定理和共角定理.接着在共边定理的基础上把面积方法算法化,系统地建立了面积消点方法.此外还进一步指出,消点不限于面积法,在全角法、三角法、向量法以及复数法的基础上也能建立消点法.下篇则对几何公理体系提出了新的见解,指出传统的欧几里得公理体系和希尔伯特公理体系的不足,并提出一个与面积法相适应的平面几何公理体系,证明了这个体系和希尔伯特公理体系的等价性.
本书从14个方面介绍了各类范例200余道一题多证(解)。主要是线段度量、角度度量、平行与垂直、相切、直线共点与点共直线、点共圆与圆共点、线段比例式及特殊图形的判定与特殊点的性质等方面的范例。本书中的每一道范例都呈现出了各种情形的证明和引人深思的技巧。 本书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师及奥林匹克教练员使用,也可作为高等师范院校数学教育专业及教师进修或培训班的数学教育方向开设的“竞赛数学”或“初等数学研究”等课程的数学参考书。
本书着眼于有向图, 将无向图作为特例,在一定的深度和广度上系统地阐述了图论的基本概念、理论和方法以及基本应用。全书内容共分7章,包括Euler回与Hamilton圈、树与图空间、平面图、网络流与连通度、匹配与独立集、染色理论、图与群,以及图在矩阵论、组合数学、组合优化、运筹学、线性规划、电子学以及通信和计算机科学等领域的应用。每章分为理论和应用两部分,并配有大量图形, 章末有小结和进一步阅读的建议。各章内容之间联系紧密,对许多 的定理给出了 简单的多种证明。每节末都有大量习题,书末附有参考文献、记号和名词索引。 本书既可用作高校数学、应用数学、运筹学、计算机科学、信息科学、管理科学等专业和相关研究所研究生和高年级本科生的选修课教材,也可用作高校和研究所图论及相关专业的教师和研究人员的参考书。
主要介绍点集拓扑和代数拓扑的基础知识。点集拓扑的内容包括度量空间、拓扑空间的基本概念,网收敛、分离性、可数性、度量化定理、紧性、连通性等;代数拓扑的内容包括基本群、覆盖空间、单纯复型与多面体、同调群等。另外还介绍了拓扑学中覆盖性质的近期成果。
《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》是从常庚哲命的一道CMO试题的积分解法谈起,进而介绍了面积原理问题.《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》共有9章:第1章引言,第2章历史与经典结果,第3章近代理论介绍——关于高维求积公式的某些简单定理,第4章二次及三次的高维求积公式,第5章构造数值积分公式的算子方法,第6章高维积分的“降维法”与二维求积公式的一种构造法,第7章高维矩形区域上的数值积分与误差估计,第8章多元周期函数的数值积分与误差估计,第9章高维数值积分公式的误差界限决定法。 《面积原理:从常庚哲命的一道CMO试题的积分解法谈起》适合大、中学师生及数学爱好者阅读及收藏。
商品参数 几何原本 定价 58.00 出版社 重庆出版社 版次 3 出版时间 2014年08月 开本 16开 作者 欧几里得 装帧 平装 页数 631 字数 700000 ISBN编码 9787229071578 内容介绍 《几何原本》共有十三卷,其中第壹卷讲三角形全等的条件,三角形边和角的大小关系,平行线理论,三角形和多角形面积相等的条件;第二卷讲如何把三角形变成面积相等的正方形;第三卷讲圆;第四卷讨论内接和外切多边形;第六卷讲相似多边形理论;第五、第七、第八、第九、第十卷讲述比例和算术的理论;zui后讲述立体几何的内容。从这些内容可以
本书主要介绍点集拓扑学的基本知识。全书分为十七讲,包括预备知识,拓扑空间的基本概念,拓扑空间之间的连续映射,拓扑基与邻域基,Tychonoff积空间,分离性公理,Urysohn引理与完全正则空间,点网与滤子,拓扑空间的紧致性,列紧性、可数紧性与伪紧性,局部紧性与Baire空间,仿紧性,连通性与道路连通性,度量空间的完备性与完备化,商空间与商映射,函数空间,同伦映射与空间的同伦等价。每讲内容介绍都比较深入,并配备大量的例题和习题。
全套书对1978~2016年的全国高中数学联赛(包括全国女子竞赛、西部竞赛、东南竞赛、北方竞赛)、中国数学奥林匹克竞赛(CMO,即全国中学生数学冬令营)、中国国家队队员选拔赛以及IMO试题中的200余道平面几何试题进行了诠释,每道试题给出了尽可能多的解法(多的有近30种解法)及命题背景,以150余个专题讲座分4卷的形式对试题所涉及的有关知识或相关背景进行了深入的探讨,揭示了有关平面几何试题的一些命题途径.本套书极大地拓展了读者的视野,可全方位地开启读者的思维,扎实地训练其基本功。
徐森林、金亚东、胡自胜、薛春华编著的这本《微分几何学习指导》是中国科学技术大学出版社出版的《微分几何》的配套书,它可帮助读者熟练地掌握微分几何的内容和方法。《微分几何学习指导》对《微分几何》一书的全部习题做了详细的解答,并增加了一些有趣的习题以及联系古典微分几何与近代微分几何的典型题目。 《微分几何学习指导》可用作综合性大学、理工科大学、师范大学数学系高年级学生、教师和研究人员的参考书。
本书汇集了作者新编的平面几何题目300余道,按题型分类,每类题目由易到难。其中大部分为基础题,难度适中;也有部分题目综合性较强,难度较大。每道题都经过细致推敲、精心打磨,具有典型性。有助于初中生读者破解数学中考压轴题,有助于参加高中数学联赛和 别的数学竞赛的选手破解平面几何试题。适合中上水平的初中生和 高年级的学生,也可供中学数学教师在教学中参考,还可供平面几何爱好者使用。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。
基础拓扑学 是一部拓扑学入门书。作者主要介绍了拓扑空间中的拓扑不变量,以及相应的计算方法。本书涉及点集拓扑、几何拓扑、代数拓扑中的各类方法及其应用,并包含大量的图解和难度各异的思考题,有助于培养学生的几何直观能力和对本书的深刻理解。本书内容浅易,注重抽象理论与具体应用相结合。