《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何的基本概念、分形维数的计算、分形图形的生成、分形生长模型与模拟、分形插值与模拟、随机分形以及与分形密不可分的混沌理论的基本知识。在此基础上,通过总结自然界中的分形行为,用实例概述了分形图形、分形维数、分形模拟技术、分形图像编码压缩技术等在自然科学、工程技术、社会经济和文化艺术等领域中的应用成果。
本书中册包含4章(第11~14章)和6个附录(附录B~G)。第11~13章依次介绍时空的整体因果结构、渐近平直时空和Kerr-Newman黑洞,第14章详细讲述与参考系有关的各种问题,包括时空的3+1分解。附录B和C分别简介量子力学的数学基础和几何相,附录D和E分别介绍能量条件和奇性定理,附录F讲述微分几何很重要的Frobenius定理,附录G则用微分几何语言比较详细地讨论了李群和李代数的知识,并专辟一节介绍对物理学特别重要的洛伦兹群和洛伦兹代数。本册仍然贯彻上册深入浅出的写作风格,为降低读者阅读难度采取了多种措施。
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
《自适应扩展等几何分析》对自适应扩展等几何分析的理论和应用进行了较为详尽的论述。《自适应扩展等几何分析》共8章,包括3部分内容。第1部分(第1~3章)系统地综述等几何分析、自适应等几何分析、扩展等几何分析和自适应扩展等几何分析理论的研究进展和主要应用,简述样条函数,介绍自适应等几何分析的基本理论;第2部分(第4、5章)详细地论述非均质问题和断裂问题的自适应扩展等几何分析;第3部分(第6~8章)介绍自适应扩展等几何分析在含缺陷功能梯度板的振动和屈*分析、含缺陷结构极限上限分析和孔洞问题安定上限分析中的应用。
分形理论是一门新兴的非线性学科,它是研究自然界不规则和复杂现象的科学理论和方法。本书主要介绍分形的基本理论及其在科学技术和人文艺术等方面的应用。全书共分10章,用通俗易懂的语言由浅入深地介绍了分形几何
内容简介:本书为《平面几何图形特性新析》的下篇,以专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。 本书内容适合初 、 高中学生 , 尤其是数学竞赛选手和初 、 高中数学教师 , 以及数学奥林匹克教练员使用 , 也可作为高等师范院校数学教育专业 , 以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书 。
本书是一本民国时期中学生用的英文原版平面几何课本。 书中介绍了中学几何的知识及内容,同时配以相应的习题与解答,以供读者 好的理解。 本书适合中学师生及数学爱好者参考阅读。
《离散数学及其在计算机中的应用(第4次修订)》系统地介绍了离散数学的基础理论,阐述了各个分支之间的联系,还说明了它在计算机中的应用。主要内容包括:集合论、关系、映射和无限集、近世代数、图论、命题逻辑、谓词逻辑、命题逻辑和谓词逻辑的公理化理论、离散数学在计算机中的应用。章末附有复习提纲及习题,书末附有各章习题解答。离散数学和计算机科学关系密切。 《离散数学及其在计算机中的应用(第4次修订)》适合作为计算机及相关专业的学生和自学考试者的教材,也可供从事计算机和数学方面研究的科技工作者和教师学习参考。