《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
许多人时常会感叹于一些数学题解法的简练和精妙,并感到困惑:这样巧妙的解法我怎么想不到?本书将完整地展现求解几何题的思考过程,特别是从错误到正确的求索过程。全书分为两篇,上篇以 17 道几何题为例,从学生的角度去探索和求解;下篇则分 7 讲完整地讲解平面几何的典型问题,从教师角度启发和引导学生思考。书中不以题目的数量和知识点的覆盖面取胜,重在讲解思维与方法。这些思维与方法不是平面几何所特有的,而是理工科解决未知问题的共性范式。学生通过阅读本书可以掌握几何题背后的思考逻辑,从容解出平面几何题,将来面对未知问题也不再畏惧。本书适合已经学完平面几何基础知识,希望搞定中考几何压轴题及数学竞赛几何题的学生阅读。
欧几里得编著兰纪正、朱恩宽编译的《几何原本/汉译经典》是世界上、最完整且流传最广的数学著作,也是欧几里得最有价值的传世著作。欧几里得在本书中,系统地总结了泰勒斯、毕达哥拉斯及智者派等前代学者在实践和思考中获得的几何知识。欧几里得建立了定义和公理并研究各种几何图形的性质,从而确立了一套从公理、定义出发,论证命题得到定理的几何学论证方法,形成一个严密的逻辑体系——几何学。而本书也就成了欧氏几何的奠基之作,它的出现,对西方人的思维方式产生深刻的影响。
本书的主要内容是函数空间的广义度量性质及基数函数性质。全书由两部分组成,部分介绍紧空间、仿紧空间、度量空间及度量空间的连续映像,第二部分介绍连续函数空间的拓扑结构、基数函数及某些重要的广义度量性质。本书展示了度量空间映像的核心内容及函数空间优美的对偶理论,突出了完全性在探索函数空间收敛性中的作用,把集论拓扑的研究应用于函数空间。
《圆锥曲线论》共有八卷,前四卷是基础部分,后四卷是拓广的内容。前四卷从12,13世纪希腊手稿复制出来的,后三卷有1290年的阿拉伯译本是采用近期美国的三部英文译本作为底本进行翻译的。
本书与初中、高中数学竞赛大纲和新编数学教材同步配套,相应地分为若干章节,每个章节都精选典型例题,进行详细讲解,还编写了课外习题,供学生练习,便于学习者了解数学竞赛中平面几何内容的各项要求本书选材于全国各地历年中考压轴几何题,各届初中、高中数学竞赛几何题以及经典的几何问题,从多家数学网站、论坛、贴吧、数学群、公众号等数万道几何题中,经过精选、分析、分类、归纳、总结,形成具有集系统性数理思维训练和实战演练于一体的培优教程。
《俄罗斯数学精品译丛:解析几何学教程(上册)》的内容和性质是为使初学者明了将分析应用于几何学是有明确的普遍方法,并发展学生在这一领域内的技能,同时使学生习惯于矢量运算及行列式论和一次、二次方式论的实际应用。
本书以几何代数理论体系与自动定理证明思想为指导,系统深入地研究了几何代数的形式化理论与公理化体系,构建了一个兼具代数推理和几何解算能力的统一形式化数学定理体系,对代数与几何从概念上进行了融合与拓展、从描述方法和运算法则上进行了综合与归纳,为代数理论赋予了“形”的特征,为几何理论提供了“数”的内涵,并将其初步应用于实际物理问题的证明,内容涵盖了自动定理证明、机器人、形式化验证等人工智能领域。全书主要内容包括:几何代数理论的进展、形式化理论;HOLLight定理证明器体系;几何代数结构的形式化;几何与物理解释的形式化;单目相机姿态估计模型的形式化分析、对称陀螺运动的形式化分析等初步应用案例。作者长期对系统形式化与自动定理证明进行深入研究,并在机器人安全验证等领域持续实践迭代,本书是对该过
《废水厌氧处理与IC厌氧反应器》全面系统地介绍了厌氧生物处理技术原理和高效厌氧消化反应器设计理论.包括三部分内容:一是对有机废水厌氧处理的基本原理与方法进行较全面系统的介绍;二是对内循环(IC)反应器的设计原理与方法进行介绍与实例论证:三是对内循环(IC)反应器的调试运行与稳定性进行初步探讨。全书共分十章。《废水厌氧处理与IC厌氧反应器》适用于大专院校环境工程专业学生、设计院以及环保工程公司从事厌氧生物处理技术的技术人员阅读参考。
本书是专门为青年学生编写的科普书,反映了的化学化工科技成果。现代文明离不开化学和化学工程,这本书以及和它配合的10个视频短片,可以让你从全新的视角,看到不一样的美丽化学和美丽化工。本书经过多年创作和打磨,尽量做到前沿性、科学性、科普性、趣味性、艺术性、传播性的统一,力求深入浅出,图文并茂。
本书主要搜集了俄罗斯有名青少年数理双月刊《量子》杂志中的经典题型100道,并配有详细解答,对于参加数学竞赛的师生来说是一本很好的参考书.书中所选题型兼顾代数、三角和几何方面的问题,题型侧重于巧,而不是难,能引发读者进一步思考和研究。
地表水特别是集中式饮用水源地水质监测是环境监测系统工作的重点。本实用监测方法立足高效、实用的原则,借鉴外的相关监测方法。综合监测一线同仁的实践经验编辑而成。书中包含地表水常规项目24项、补充项目5项、集中式饮用水源地特定项目80项的现行实用的分析方法。《地表水环境质量监测实用分析方法》可供各级环境监测部门、从事地表水环境监测工作人员使用。
本书揭示了几何和拓扑之间的相互关系,为广大读者介绍了现代几何的基本概况。书的开始介绍了三种简单的面,欧几里得面、球面和双曲平面。运用等距同构群的有效机理,并且将这些原理延伸到常曲率的所有可以用合适的同构方法获得的曲面。紧接着主要是从拓扑和群论的观点出发,讲述一些欧几里得曲面和球面的分类,较为详细地讨论了一些有双曲曲面。由于常曲率曲面理论和现代数学有很大的联系,该书是一本理想的学习几何的入门教程,用简单易行的方法介绍了曲率、群作用和覆盖面。这些理论融合了许多经典的概念,如,复分析、微分几何、拓扑、组合群论和比较热门的分形几何和弦理论。本书内容自成体系,在预备知识部分包括一些线性代数、微积分、基本群论和基本拓扑。书中不少例子和每章节后面的练习可以帮助读者好地理解书中知识。