《拓扑学》(原书第2版)系统讲解拓扑学理论知识。在美国大学作为教材近20年,*近由原作者进行了全面更新。第1部分为一般拓扑学,讲述点集拓扑学的内容,介绍作为核心题材的集合论、拓扑空问、连通性、紧致性以及可数性公理和分离性公理;第二部分为代数拓扑学,讲述与拓扑学核心题材相关的主题,其中包括基本群和覆叠空问及其应用。 《拓扑学》(原书第2版)较大的特点在于概念引入自然,循序渐进。对于疑难的推理证明,将其分解为简化的步骤,不给读者留下疑惑。此外,书中还提供了大量练习,可以巩固加深学习的效果。严格的论证、清晰的条理、丰富的实例,让深奥的拓扑学变得轻松易学。
本书所研究的几何变换仅限于平面上的合同变换、相似变换和反演变换这三类初等几何变换;本书系统地阐述了这三类几何变换的理论和它们在几何证题方面的应用。阅读本书只需要具有中学数学知识即可;对于阅读几何变换理论有困难的读者,也可以只阅读与几何证题有关的章节。 本书适合大中师生及数学爱好者使用。
《代数几何学原理》(EGA)是代数几何的经典著作,由法国著名数学家Alexander Grothendieck(1928 2014)在J. Dieudonn 的协助下于20世纪50 60年代写成。在此书中,Grothendieck首次在代数几何中引入了概形的概念,并系统地展开了概形的基础理论。EGA的出现具有划时代的意义,对现代数学产生了多方面的深远影响。 首先,EGA为代数几何建立了极其广阔、完整和严格的公理化概念体系和表述方式(现已成为代数几何的标准语言),极大地整合了这一数学分支的古典理论,并为后来的发展奠定了坚实的基础。其次,EGA把数论和代数几何统一在一个理论框架之内,促成了平展上同调等理论的建立,进而导致了著名的Weil猜想的证明的完成(由Grothendieck的学生Deligne所完成,并因此获得Fields奖)。当前数论和代数几何中的许多重大进展都在很大程度上归功于EGA所建立的思想方法,比如Mordell
内容简介:本书分上、下篇.上篇分为15章,介绍了22种平面几何证明方法,涵盖了求解平面几何问题常用方法和技巧.下篇介绍了13类问题的各种证明思路.本书在归纳、总结平面几何概念、定理、公式的基础上,更贴近数学完整的命题方向、命题内容,适合初、高中学生尤其是数学竞赛选手和初、高中数学教师及中学数学奥林匹克教练员使用,也可作为高等师范院校教育学院、教师进修学院数学专业及数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书.
本书与初中、高中数学竞赛大纲和新编数学教材同步配套,相应地分为若干章节,每个章节都精选典型例题,进行详细讲解,还编写了课外习题,供学生练习,便于学习者了解数学竞赛中平面几何内容的各项要求.本书选材于全国各地历年中考压轴几何题,各届初 中、高中数学竞赛几何题以及经典的几何问题,从多家数学网站、论坛、贴吧、数学群、公众号等数万道几何题中,经过精选、分析、分类、归纳、总结,形成具有集系统性数理思维训练 和实战演练于一体的培优教程 本书适用于参加初中、高中数学竞赛的学生学习和训练,对参加大学自主招生、高考 的学生及初中、高中、大学数学教师也有一定的参考价值
内容简介:本书分上、下篇,以66个专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。全书内容适合初、高中学生,尤其是数学竞赛选手和初、高中数学教师,以及数学奥林匹克教练员使用,也可作为高等师范院校数学教育专业以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书。
本书中册包含4章(第11~14章)和6个附录(附录B~G)。第11~13章依次介绍时空的整体因果结构、渐近平直时空和Kerr-Newman黑洞,第14章详细讲述与参考系有关的各种问题,包括时空的3+1分解。附录B和C分别简介量子力学的数学基础和几何相,附录D和E分别介绍能量条件和奇性定理,附录F讲述微分几何很重要的Frobenius定理,附录G则用微分几何语言比较详细地讨论了李群和李代数的知识,并专辟一节介绍对物理学特别重要的洛伦兹群和洛伦兹代数。本册仍然贯彻上册深入浅出的写作风格,为降低读者阅读难度采取了多种措施。
本书是一本关于微分几何与广义相对论的专著,其特点是强调用数学结构和物理现象作为不可分割的统一体去发现和揭示数学与自然奥秘.在这部著作中,提出一种关于暗物质与暗能量的统一理论,它是非表象的理论,可很好地解释暗物质与暗能量现象.本书不仅提出和总结了作者的许多新理论和新结果,而且采用直指本质的方式陈述和介绍有关方面成熟的理论与概念.
本书提供了俄罗斯在中学,其中包括在专门化的学校学习的几乎所有平面几何的问题及各题的提示,本书适用于大学、中学师生和数学奥林匹克选手及教练员。
本书对泛函分析的重要研究方向——Banach空间的凸性理论作了比较全面的总结,内容基本覆盖了近八十年凸性方面的主要研究成果,介绍了Banach空间的严格凸和一致凸的很多推广,也有很多关于范数可微和Banach空间的光滑性方面的结果.另外,对于光滑性很差的范数的性质,如粗范数,也作了较全面的介绍.
内容简介:本书为《平面几何图形特性新析》的下篇,以专题的形式介绍了平面几何中*基本的图形性质。这些性质是作者在平面几何研究中以新的角度探索并呈现的,是求解有关几何难题的知识储备。 本书内容适合初 、 高中学生 , 尤其是数学竞赛选手和初 、 高中数学教师 , 以及数学奥林匹克教练员使用 , 也可作为高等师范院校数学教育专业 , 以及教师进修数学教育研讨班开设的 竞赛数学 或 初等数学研究 等课程的教学参考书 。
无
《的实验与观察:力学发展的基础》共收录了关于力学发展史上的实验与观察的15篇文章。内容包括:漫谈杠杆原理;斯蒂文的尖劈;第谷的观测与开普勒的行星运动定律;伽利略的斜面上下落实验;碰撞问题;玻意耳的抽气筒;惠更斯的摆钟;郑玄的弓和胡克的弹簧;伯努利的流体动力学;焦耳的热功当量实验;卡文迪许的万有引力实验;湍流;傅科的转动指示器;金属的疲劳;沃尔夫定律。 《的实验与观察:力学发展的基础》可以供高中生、理工科大学生、教师,科研工作者以及对科学史感兴趣的读者阅读和参考。
《圆锥曲线论》共有八卷,前四卷是基础部分,后四卷是拓广的内容。前四卷从12,13世纪希腊手稿复制出来的,后三卷有1290年的阿拉伯译本是采用近期美国的三部英文译本作为底本进行翻译的。
全套书对1978~2016年的全国高中数学联赛(包括全国女子竞赛、西部竞赛、东南竞 赛、北方竞赛)、中国数学奥林匹克竞赛(CMO,即全国中学生数学冬令营)、中国国家队队员选拔赛以及IMO试题中的200余道平面几何试题进行了诠释,每道试题给出了尽可能多的解法(多的有近30种解法)及命题背景,以150个专题讲座分4卷的形式对试题所涉及的有 关知识或相关背景进行了深入的探讨,揭示了有关平面几何试题的一些命题途径.本套书极大地拓展了读者的视野,可全方位地开启读者的思维,扎实地训练其基本功 本套书适合于广大数学爱好者,初、高中数学竞赛选手,初、高中数学教师和中学数学奥林匹克教练员使用,也可作为高等师范院校、教育学院、教师进修学院数学专业开设的 竞赛数学 课程教材及*、省级骨干教师培训班参考使用
本书介绍了拓扑群的基本概念、测度与积分、拓扑群(特别是紧、局部紧的拓扑群)的表示,同时讨论齐性空间、群代数和K理论的一些相关结果.内容由浅入深,直至近代的重要成果.
《在陈省身先生影响下的微分几何》是献给20世纪伟大的几何学家之一陈省身先生100周年诞辰的纪念文集。它包括了世界各地的数学家、特别是华人数学家的优秀研究文章。这些文章评述了陈省身先生所研究领域的目前状况,并讨论未来的发展方向,r8容涵盖了Gauss—Bonnet公式、共形几何、CR几何、流形、Ricci流、Einstein度量、等参超曲面、比较定理.Tits厦等方面。 《在陈省身先生影响下的微分几何》适合研究生和年轻的数学工作者阅读,其他读者亦可从中找到相关领域的有价值的信息。
一个空间嵌入另一空间(例如欧氏空间)是否可能以及这些嵌入所依据的同痕的分类问题,已成为拓扑学中重要的中心问题之一,也是许多拓扑学家从各种不同角度用各种不同方法研究的对象之一。本书是作者从1954年以来在这方面研究工作的一个总结报告,它的方法在于研究空间的去核p重积,即将P重积除去对角以后所余的空间,这一概念可追溯到VanKampen早在1932年的一篇重要论文。其次再应用P.A.Smith有关周期变换的理论以获得若干作为 Smith特殊群中上类的不变量,它们之为0是嵌入的必要条件而在某些*情形又同时为充分条件。关于嵌入的许多已知结果以及一些新的结果,虽有着种种不同的来源,都可用这一统一的方法得出。浸入与同痕也可用同样办法处理并得出相应的类似结果。
离散几何有着150余年的丰富历史,提出了甚至高中生都能理解的诸多公开问题。某些问题异常困难,并和数学其他领域的一些深层问题密切相关。然而,许多问题,甚至某些年代久远的问题,都可能被聪明的大学本科生或者高中生运用精妙构思和数学奥林匹克竞赛中的某些技巧所解决。 《离散几何中的研究问题》是由Leo Moser牵头,花费25年著成,书中包括500余个颇具吸引力的公开问题,理解其中许多问题并不需要太多的准备知识。书中的各章很大程度上内容自含,概述了离散几何,介绍了各个问题的历史细节及重要的相关结果。 本书可作为参考书,供致力数学研究,热爱美妙数学问题并不遗余力地试图加以解决的那些专业数学家和研究生查阅。 本书的显著特色包括: 500多个公开问题,其中某些问题的历史久远,而某些问题为新近提出且从未出版;
科士青所*的《几何学基础/俄罗斯数学精品译丛》详细介绍了几何学的历史概要,欧几里得几何及罗巴切夫斯基几何等的内容。全书共分七章,从历史概要开始,详细介绍了**几何、欧几里得几何,罗巴切夫斯基几何及其三角法和**三角法以及其解释,面积论等内容。有助于学生*好地理解几何,学习几何。 本书适合相关专业本科生、研究生及数学爱好者阅读。
The first contribution of this EMS volume on complex algebraic geometry touches upon many of the central problems in this vast and very active area of current research. While it is much too short to provide complete coverage of this subject, it provides a succinct summary of the areas it covers, while providing in-depth coverage of certain very important fields. The second part provides a brief and lucid introduction to the recent work on the interactions between the classical area of the geometry of complex algebraic curves and their Jacobian varieties,and partial differential equations of mathematical physics. The paper discusses the.work of Mumford, Novikov, Krichever, and Shiota,and would be an excellent companion to the older classics on the subject.