本书是一本非数学专业主要是文科及艺术类专业的数学教材,讲述方式活泼,案例贴近生活,读者可以在轻松学习中体会数学乐趣和意义。全书分为三大部分:归纳和演绎、逻辑和数;代数和几何;概率统
《好看的数学故事:概率与统计卷》以讲故事的方式介绍概率统计的概念和理论发展的历史。 从流传数千年的投币和骰子游戏到古老的八卦,从古印度《吠陀经》的韵律到希伯来字母排列的神秘咒语,古人们逐渐发现了排列与组合的基本规律。当阿拉伯的骰子游戏传入经过文艺复兴的欧洲,概率的概念开始明晰起来。 起初的概率,多半应用在赌博游戏上,不仅是投币和骰子,还有纸牌、赛马等等。这些东西在学术领域似乎不值一提,但古典概率理论一旦出现,立即在社会各个领域发现重要的应用价值。统计学随之而生。 通过字母分析破译密码,通过死亡记录探究传染病的危害,新生婴儿的性别比例,居民寿命的期望值和保险年金,统计学在人类社会从古典社结构进入现代结构的发展过程中发挥了极其重要的作用。天文学、实验物理学和数学的发展推动了概率统计
本书是结合作者多年的教学经验,根据理工科“数学物理方程”教学大纲的要求及大气科学等专业的需要而编写的。本书以方法为主线,内容包括典型模型的定解问题建立、方程的分类与标准型、行波法、分离变量法、积分变换法和格林函数法等。在此基础上,介绍了研究偏微分方程定性理论的极值原理和能量方法,探讨了贝塞尔函数及勒让德函数的应用。本书叙述注重启发性、系统性与应用性,把较难的概念与尽量浅显的例子适当结合,将方法运用于各种应用驱动的偏微分方程模型中,并补充和扩展了相关知识到交叉应用领域。书中配有较多的典型例题和习题,可供读者阅读与练习。
本书的主要内容包括:误差与范数,非线性方程(组)的数值解法,解线性方程组的直接方法,解线性方程组的迭代法,矩阵特征值与特征向量问题的计算,函数的插值方法,曲线拟合与函数逼近,数值微分,数值积分,常微分方程(组)求解,用差分法求偏微分方程数值解。本书可作为各类高等学校数学本科专业及非数学专业高年级学生数值分析教材及上机指导用书,也适用于教师及工程技术人员参考。
《测度与概率(第2版)/普通高等教育“十一五”规划教材·数学与应用数学基础课系列教材》论述测度论和以测度为基础的概率论的基本知识和方法,包括集及其势、距离空间、测度与概率、可测函数与随机变量、积分与数学期望、乘积测度与独立、Radon-Nikodym定理与条件期望、概率极限理论等。《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》的特点是读者不必学习实变函数论而学习测度论;测度论与概率论的基本内容紧密结合而更有利于理解二者的关系及其实质;在《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》的基本目标下,尽可能使内容现代化;《新世纪高等学校教材·数学与应用数学基础课系列教材:测度与概率(第2版)》文字通畅、条理清楚、论述严谨、便于学习;每节后都配有较多的
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答. 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书.
非帕斯卡概率逻辑是美国逻辑学家乔纳森 柯恩 创立的、有别于帕斯卡概率逻辑的一种新型逻辑,该 逻辑系统的*大的特征是不满足帕斯卡公理系统的否 定互补性原理和乘法法则。沈振东*的《非帕斯卡概 率逻辑的哲学基础与应用研究》立足于三个研究视角 :一是在传统的归纳逻辑理论的演化序列中探寻该逻 辑系统的哲学基础的合理性;二是从可能世界语义学 角度对该种逻辑进行形式刻画,并建立逻辑系统;三 是该逻辑系统以相关变量等概念为工具尝试性地对帕 斯卡概率不解释的领域进行解释,或者对应用帕斯卡 概率而导致悖论性的结论进行消解。
本书追溯了统计学如何误入歧途的历史(300多年),从十七世纪数学家雅各布?伯努利的开创性工作开始,一直到赌博、天文学和遗传学中对统计学的运用。作者讲述了互相竞争的统计学派之间的争斗,探讨了催生该学科的令人惊讶的人类问题(种族主义)以及使其脱轨的所有人类缺点。例如,十九世纪和二十世纪里有影响力的人发展出一种他们声称是纯粹客观的统计方法,以压制对其政治议程(包括优生学)的批评。作者对概率的数学和逻辑进行了清晰的阐述,深入浅出地将较为复杂的概念介绍给对统计方法感兴趣的读者,这些统计方法实质上构成了我们对世界的理解。他认为,我们需要采取贝叶斯方法——即在用不 信息进行推断时纳入先验知识,以解决危机。本书的内容横跨数学、哲学和文化,解释了为什么我们使用数据的方式出了问题,以及如何解决这个问
《简明数学词典》所收词条以大学本科数学课程为主,并略有扩展,其内容包括数论、多项式、线性代数、抽象代数、有限群表示、李群、李代数、解析几何、高等几何、微分几何、点集拓扑学、代数拓扑学、数学分析、实分析、复分析、泛函分析、常微分方程、偏微分方程、概率论、随机过程、数理统计、计算数学、组合数学、图论、模糊数学、运筹学、数学基础、集合论、数理逻辑、控制论、计算机科学、经济数学以及常用的数学常数、公式和数表等。共收词条约4800条。为便于查阅,书末附有按汉语拼音音序排列的中文词条索引,和按英文字母顺序排列的英文词条索引。《简明数学词典》可供大学本科生、专科生、大学教师及科技工作者使用。
《混沌与分形浅谈》就是一本通俗科学书,但又不是一般的通俗科学书。它所讲的问题不是只作泛泛的介绍,而是有一定的数学推导,推导过程详尽而浅显,使读者一读就能读懂,从而获得相应的知识。它既适合高中学生,也适合大学学生;既适合从事该方面研究的人作为人门读物,也适合不从事该方面工作的各类科学工作者作为拓宽知识的读物。
《第51-76届莫斯科数学奥林匹克》包含了1988—2013年举办的第51—76届莫斯科数学奥林匹克的试题。书中对每一道试题都给出了详细解答,对有些试题还作了延伸性的讨论。对于一些我国读者难以理解的内容和一些较为陌生的数学概念,都以编译者注的形式给出了注释。为便于阅读,还在书中的专题分类中对有关数学知识和解题方法作了介绍。
《数学与文化(珍藏版)》分3章讨论了数学与文化的关系问题。作者从数学和文化的起源谈起,直至它们的演变和进化。用诸多的事例,说明数学对人类文化的影响,不仅显示在现代科学技术方面,重要的是它表现了一种理性主义的探索精神。书中还多角度地论述了数学的事业是一桩的探索,它既探索宇宙,也探索人类自己深的奥秘这样一种观点。最后的结论是:一个没有现代数学的文化是注定要衰落的,表达了作者对文化的独特理解和感受。
数学是人们在长期的社会实践中产生的,发展历史源远流长。因此它和生活中的人文景观,天文气象,金融理财等方面的知识结下了不解之缘。“数学传播谱新歌”丛书意在从上述人们所喜爱的题材出发,展示数学精辟它们的联系,相互的渗透和应用,从而使人们深深地体会:某一学科的自身发展离不开数学这门工具;数学是放之四海而皆准的普遍真理。《数学与文史》是丛书中的头本,它们将数学和文史的知识结合在一起,阐述如何以数学的眼光观察、分析某些历史事实和人物;数学思想在处理知识时的哲理理念;文史之美和数学之美的和谐统一。《数学与文史》文字通俗、流畅、典雅,图文并茂,装帧精美,供读者在学习知识的同时获得美的享受。
在管理科学、运筹学、信息科学、系统科学、计算机科学以及工程等很多领域都存在人为的或客观的不确定性,如性、模糊性、粗糙性、模糊性。在不确定环境下如何建立优化模型?如何求解这些模型?不确定规划恰恰回答了这两个问题。本书将介绍不确定规划的理论、算法以及在可靠性优化、设备选取址、机器排序、车辆调度、关键路问题等方面的应用。并力图反映不确定规划的研究成果。本书可作为高年级大学生和研究生教材,也可作为教师和技术人员的参考书。
本书是一本着重实际应用又有理论尝试的化方法教材,内容包括线性规划、运输问题、整数规划、目标规划、非线性规划(无约束化与约束化)、动态规划等基本、应用最广又最代表性的化方法,各章都由实例引入,对主要定理进行证明,引入相应的数学模型与算法,配有算法命题与详细步骤,章末附有习题,书末有习题解答与提示,本书还专辟一章,列举了用新版本的MATLAB软件包及LINDO/LINGO优化软件包来计算的实例。 本教材在阐述若要与基本理论时,力求清晰,透彻,在适当地方配置了些思考题,以促使读者深入思想,加深对内容的理解,在文字叙述方面力求语言浅显、简易明了,深入浅出,以便于学生学习。
本书由实际问题出发,以逐步解决问题的方式,系统地介绍了线性代数的基本知识,以及相关问题的数学建模思想和数学实验的实现技术。主要内容包括行列式,矩阵,线性方程组,相似矩阵及二次型,线性空间和线性变换,各章均配有适量习题,书末附有习题答案。为了培养和提高学生的应用能力,《线性代数(高等学校教材)》还编写了MATLAB数学软件应用于线性代数和线性代数综合应用实例两个附录。全书涵盖了本科非数学类专业线性代数课程所有内容和研究生数学考试大纲有关线性代数的相关知识。《线性代数(高等学校教材)》取材精炼,讨论角度独具特色,各章前有历史展望,章末有小结,有益于学生开拓视野,加深对数学本身的理解。《线性代数(高等学校教材)》可作为普通高等学校非数学类专业本科学生教材,也可供高等学校教师和工程技术人员参考。
《多元视角下的数学文化》从数学题材、数学典籍、数学史料、数学名题、数学应用、数学艺术和文字学等多视角去审视数学文化,涵盖面广、内容丰富。书中选用了大量图片,形象生动。 《多元视角下的数学文化》观点高,起点低,可读性强。适于数学工作者、中学教师和具有以上文化程度的其他读者阅读。 《多元视角下的数学文化》从数学题材,数学典籍,数学史料、数学名题、数学应用、数学艺术和文字学等多视角去审视数学文化,涵盖面广、内容丰富、书中选用了大量图片形象生动。
本书是作者在多年从事研究生课程“过程及应用,,教学中,对工科、理科以及经济管理领域中典型习题进行了相关收集和整理而成的,书中给出了大量习题的详细求解过程和证明,同时加入了部分自编习题·全书注重理工结合,难度适中,强调各章节知识点间的联系和数学思维能力的训练。 本书可作为工科研究生、金融工程研究生、工科高年级本科生以及数学专业学生的学习用书,也可作为教师的教学辅导书。
本书是一部经典的过程著作,叙述深入浅出、涉及面广。主要内容有变量、条件期望、马尔可夫链、指数分布、泊松过程、平稳过程、更新理论及排队论等,也包括了过程在物理、生物、运筹、网络、遗传、经济、保险、金融及可靠性中的应用。特别是有关模拟的内容,给系统运行的模拟计算提供了有力的工具。新版还增加了不带左跳的徘徊和生灭排队模型等内容。本书约有700 道习题,其中带星号的习题还提供了解答。本书可作为计算机科学、保险学、社会科学、生命科学、管理科学与工程等专业过程基础课教材。
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、Lp-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、Hp-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。 本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
《深入浅出统计学》具有“深入浅出系列”的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。