《深入浅出统计学》具有 深入浅出系列 的一贯特色,提供符合直觉的理解方式,让统计理论的学习既有趣又自然。从应对考试到解决实际问题,无论你是学生还是数据分析师,都能从中受益。本书涵盖的知识点包括:信息可视化、概率计算、几何分布、二项分布及泊松分布、正态分布、统计抽样、置信区间的构建、假设检验、卡方分布、相关与回归等等,完整涵盖AP考试范围。本书运用充满互动性的真实世界情节,教给你有关这门学科的所有基础,为这个枯燥的领域带来鲜活的乐趣,不仅让你充分掌握统计学的要义,更会告诉你如何将统计理论应用到日常生活中。
本书追溯了统计学如何误入歧途的历史(300多年),从十七世纪数学家雅各布?伯努利的开创性工作开始,一直到赌博、天文学和遗传学中对统计学的运用。作者讲述了互相竞争的统计学派之间的争斗,探讨了催生该学科的令人惊讶的人类问题(种族主义)以及使其脱轨的所有人类缺点。例如,十九世纪和二十世纪里有影响力的人发展出一种他们声称是纯粹客观的统计方法,以压制对其政治议程(包括优生学)的批评。作者对概率的数学和逻辑进行了清晰的阐述,深入浅出地将较为复杂的概念介绍给对统计方法感兴趣的读者,这些统计方法实质上构成了我们对世界的理解。他认为,我们需要采取贝叶斯方法——即在用不 信息进行推断时纳入先验知识,以解决危机。本书的内容横跨数学、哲学和文化,解释了为什么我们使用数据的方式出了问题,以及如何解决这个问
本书的特色在于结合实际案例来展现R在数据科学领域的灵活性,不仅能让读者学习统计知识,也能提升代码编写能力。全书共15章,第1章详细介绍了R和RStudio的安装方法;第2章至第3章介绍了导入数据的方法,以及R的基本工作原理;第4章介绍了R中重要的数据管理方法;第5章讲解数据可视化的知识;第6章至 5章,每一章对应了一个统计知识点,包括描述性统计、简单线性回归、多元线性回归、虚拟变量回归、Logistic回归、多层次和纵向分析、因子分析等。 为方便读者学习,本书提供了astatur包,这个工具包涵盖了本书中使用的所有数据集,以及相关章节中提到的一些补充函数。此外,本书没有过多地介绍复杂的数学公式,对于 知识点使用了尽可能通俗的语言进行讲解,因此本书适合作为R统计分析课程的教科书,也适合数据分析初学者参考学习。
这本经典的概率论教材通过大量的例子系统介绍了概率论的基础知识及其应用,主要内容有组合分析、概率论公理、条件概率、离散型随机变量、连续型随机变量、随机变量的联合分布、期望的性质、极限定理和模拟等,内容丰富,通俗易懂.各章末附有大量的练习,分为习题、理论习题和自检习题三大类,并在书末给出自检习题的全部解答。 br 本书是概率论的入门书,适合作为数学、统计学、经济学、生物学、管理学、计算机科学及其他各工学专业本科生的教材,也适合作为研究生和应用工作者的参考书。 br br
《经典位势论及其对应的概率论》是一部杰作,书中的第一部分重点讲述了势能理论及其相关的拉普拉斯方程和热方程;第二部分深入分析了和第一部分相关的随机过程理论部分。
《群论》旨在为物理学家介绍群理论的许多有趣的数学方面,同时将数学家带入物理应用。针对高年级本科生和研究生,书中给出了有限群和连续群的最全面的特点,并且强调在基础物理中的应用;展开讨论了有限群,重点强调了不可约表示和不变性;详细论述了李群,也用较多的笔墨讲述了Kac-Moody代数,包括Dynkin图。
《微积分学习辅导与解题方法》是高等学校经济类、管理类各专业学生学习《微积分》课程的辅导教材。内容包括一元函数微积分,多元函数微积分,无穷级数,微分方程与差分方程。《微积分学习辅导与解题方法》强调对基本概念、基本理论内涵的理解及各知识点之间的相互联系。选题广泛、典型,既有基本题,又有综合题、提高题,用“讲思路举例题”与“举题型讲方法”的方式来揭示解题规律与思维方法,以使读者融会贯通,举一反三,达到正确理解、巩固所学知识和灵活运用;纠正在运算方法、运算过程中常犯的错误;掌握解题思路、解题方法;提高逻辑推理和分析判断能力;提高解题技巧。《微积分学习辅导与解题方法》每章有小结并配有自测题;自测题附有参考答案与解法提示。《微积分学习辅导与解题方法》是经济类、管理类学生学习期间和报考研
《经典几何》包括“几何基础”和“射影几何”(即高等几何)两大部分。“几何基础”部分从介绍欧几里得“几何原本”出发,了解各种几何概念的渊源、几何学发展的历程以及当时已达到的成就。“高等几何”部分的重点是对仿射几何、射影几何等几种重要的经典几何予以详尽分析,搞清它们之间的不同几何性质。
CHAPTERIHilbertSpaces、CHAPTERⅡOperatorsoHilbertSpace、CHAPTERⅢBanachSpaces、CHAPTERIVLocallyConvexSpaces、CHAPTERVWeakTopologies、CHAPTERⅥLinearOperatorsoaBanachSpace、CHAPTERⅦBanachAgebrasandSpectralTheoryforOperatorsoaBanachSpace、CHAPTERⅧC-Algebras、CHAPTERⅨNormalperatorsoHilbertSpace、CHAPTERⅩUnboundedOperators、CHAPTERⅪFredholmTheory等。
20世纪60年代诞生的计量地理革命引导地理学研究方法从定性走向定量。本书不仅全面描述了计量地理学的发展,还分析了计量地理学在发展过程中饱受非议的原因,即在计量地理学发展之初,以全局数量统计方法为核心,片面应用数理统计技术解释具有空间异质性、差异性的问题,导致全局模型在空间解释中的无效。在深入回顾计量地理学发展的基础上,作者抓住地理学的灵魂一空 间的实质,全面地介绍了计量地理学的方法,突出了由地理学空间性质决定的“局部空间分析法”,如地理加权回归方法、空间点模式、空间回归与地理统计等。
Thiseditioncontainsfournewsectionsonthefollowingtopics:theBDDCdomaindepositionpreconditioner(Section7.8),aconvergentadaptivealgorithm(Section9.5),interiorpenaltymethods(Section10.5)andPoincare-FriedrichsinequalitiesforpiecewiseWp1functions(Section10.6).Wehavemadeimprovementsthroughoutthetext,manyofwhichweresuggestedbycolleagues,towhomwearegrateful.Newexerciseshavebeenaddedandthelistofreferenceshasalsobeenexpandedandupdated.