如果你是一个有 数学焦虑症 的人,你可能不会相信有一天你会爱上数学。 原因在于,我们在学校所学的数学知识看上去不过是一堆沉闷的规则、定律和公理,都是前人传下来的,而且是不容置疑的。在《魔鬼数学》中,世界知名数学家乔丹?艾伦伯格告诉我们这样的认识是错误的。数学与我们所做的每一件事都息息相关,可以帮助我们洞见在混沌和嘈杂的表象之下日常生活的隐性结构和秩序。数学是一门告诉我们 如何做才不会犯错 的科学,是经年累月的努力、争论所锤炼出来的。 你应该提前多长时间到达机场?民意调查的结果真的能代表人们的意愿吗?为什么父母都是高个子,孩子的身高却比较矮?用什么策略买**才能中大奖?《魔鬼数学》运用数学方法分析和解决了很多的日常生活问题,帮助数学门外汉习得用数学思维思考问题的技能。 作者用数
本书以易于理解的方式讲述了时间序列模型及其应用,主要内容包括:趋势、平稳时间序列模型、非平稳时间序列模型、模型识别、参数估计、模型诊断、预测、季节模型、时间序列回归模型、异方差时间序列模型、谱分析入门、谱估计、门限模型.对所有的思想和方法,都用真实数据集和模拟数据集进行了说明. 本书可作为高等院校统计、经济、商科、工程及定量社会科学等专业学生的教材或教学参考书,同时也可供相关技术人员使用.Translation from the English language edition:Time Series Analysis with Applications in R ,Second Edition(ISBN 978 0 387 75958 6)by Jonathan D.Cryer and Kung Sik Chan. Copyright 2008 Springer Science+Business Media,LLC. Springer is a part of Springer Science+Business Media.
基于项目学习的理论与实践,结合师范生的数学核心素养要求,以魔术游戏为载体,开发项目教学资源是有意义的。魔术游戏中的数学经多轮教学实践,使学生在真实的情境中经历观察、体验、探究、交流、感悟的过程,体会素养的发生、发展、深化与积淀。 该研究总结凝练了以初等数学知识、原理为主,以扑克牌、数表、骰子等为道具设计的典型魔术游戏项目;提出了魔术项目设计的六环节:魔术示范-魔术揭秘-魔术拓展-数学素养-实践思考-发展评价;编写了促进数学核心素养落地的魔术教学案例。 该著作的创新之处,首先,魔术、游戏与数学相结合形成研究的整体内容,基于读者的视觉和操作偏好,遵循教、学、做、创的思路编排内容,符合知、行、思的认知发展规律,凸显科学性;其次,魔术探究从形象到抽象、特殊到一般、猜想到推理、模型化到应用的
数学不仅有抽象的计算和公式,还与人类文化和思维紧密相关。 数学对生活的影响无处不在,它甚至可以改变我们对世界的认知。原来数学和语文、美术、科学这些学科竟然密不可分。用故事串起数学明珠,带你畅游神秘数学王国,书中每一页都充满惊喜与挑战!从电影里幸存者的故事,到游戏中藏着的概率,再到战争中的密码学,都有数学在其中起作用!不仅如此,数学还有属于自己的美学和哲学。它像艺术家一样创作美丽的图案,像哲学家一样思考世界,像诗人一样描绘世界,像侦探一样揭破谜案。 加入这场数学派对,你会发现:数学或许不是你以为的那样,它不仅不枯燥,还蕴藏着无限的乐趣。
《高级计量经济学》是雨宫健教授在长年担任Joural of Econmometrics主编之后编写的研究生层次的计量经济学教材,融合了计量经济理论研究的方法和技巧,也是一本值得计量经济学的专业人员认真阅读的计量经济学著作。在计量经济学理论研究的学术论文中,《高级计量经济学》是一本被广泛引用的参考文献,迄今为止的累计引用数高达3 200次以上。《高级计量经济学》着重讨论微观计量经济学涉及的各种理论问题,特别是在微观计量分析的定性模型的详细讨论中融入了作者的研究心得经验。《高级计量经济学》从经典小二乘法出发,结合拓展的各种回归分析方法,说明计量经济理论涉及的大样本理论,利用大样本理论讨论微观计量分析出现的极值统计量的性质及各种微观计量模型的统计推断问题。考虑到计量经济理论体系的完整性,《高级计量经济学》也适当介
本书是根据*颁布的《理工科类大学物理实验课程教学基本要求》,结合大学物理实验仪器设备实际情况,在总结多年大学物理实验教学实践经验的基础上编写而成的。 全书共分4章,绪论部分介绍了物理实验的目的和任务、基本规则和要求,第1章介绍了测量误差理论、不确定度、实验数据处理方法等内容,第2章共9个基础实验,第3章共12个近代物理与综合应用性实验,第4章共9个研究及设计性实验,用于学生第二课堂的自主学习,附录中给出了常用的物理参数。书中所有思考题都配有参考答案,大部分实验项目有配套视频,方便在线学习。 本书可作为高等学校工科各专业的大学物理实验课程教材和参考书。
A.H.施利亚耶夫编著的《*金融数学基础(第1卷事实模型)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷。每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系。又相对独立。读者可把本书看作一本“*金融数学全书”。 卷的章有关国际金融市场以及金融理论和金融工程的“事实”。它可看作一位前苏联数学家对西方金融市场和金融理论、金融工程的独特理解。其中作者不但概述了金融市场的基本状况、金融学的基本概念以及Markowitz证券组合选择理论、资本资产定价模型《CAPM)、Ross套利定价理论(APT)、有效市场理论等。甚至还简要介绍了保险业和精算理论。 卷的后三章都有关金融学的*“模型”:离散模型、连续模型和统计模型。作者提出,Doob分解、局部鞅、鞅变换等概念
引力定律原本是解释和预测物体之间引力交互的一个基本物理定律,但有趣的是,人们发现在交通出行、人口迁移、商品贸易、信息通讯、科研合作等大量不同的社会交互现象中,空间交互的强度都近似服从引力定律。在过去的一百多年里,引力模型也被大量应用于地点之间人口、商品、交通、信息等流动量的预测工作中。但是,社会系统中的引力定律为什么存在?如何从*原理出发解释空间交互的引力模型?有没有比引力模型更准确、更普适的模
在经济学中,绝大多数的非合作博弈理论集中研究博弈中的均衡问题,尤其是纳什均衡及其精炼。对均衡什么时候出现以及为什么均衡会出现。传统解释是,均衡是在博弈的规则、参与人的理性以及参与人的支付函数都是共同知识的情况下,由参与人的分析和自省所得出的结果。不论是在概念上还是在实证上,这个理论都存在许多问题。 在《博弈学习理论》一书中,朱·弗登伯格和戴维·K·莱文提出了另一种解释:均衡是并非完全理性的参与人随着时间的推移寻求*化这一过程的长期结果。他们研究的模型为均衡理论提供了基础,并为经济学家评价和改进传统的均衡概念提供了有用的方法。
《华章数学译丛:数理金融初步(原书 3版)》清晰简洁地阐述了数理金融学的基本问题,主要 括 利、Black-Scholes期权定价 式以及效用函数、优资产组合原理、资本资产定价模型等知识,并将书中所讨论的问题的经济背景、解决这些问题的数学方法 基本思想 统地展示给读者. 《华章数学译丛:数理金融初步(原书 3版)》内容 择得当、结构 排合理,既适合作为高等院校学*( 括财经类 业及应用数学 业)的 材,同时也适合从 金融 作的人员阅读。
本书选编了阿蒂亚关于拓扑学、大范围几何、纯粹数学的历史及发展方向等方面的文章。此外还包括阿蒂亚访问记、阿蒂亚对自己数学工作的总结以及他关于其他学科对数学的影响等的论述。通过本书,我们可以全面地了解阿蒂亚的数学和哲学思想。
? 本书涵盖如下主要经济分析的内容:静态学(均衡分析)、比较静态学、化问题(静态学的一种特例)、动态学和数学规划(化的现代发展)。为掌握上述内容,我介绍了如下数学方法:矩阵代数、微积分、微分方程、差分方程和凸集。由于书中介绍了大量宏观、微观经济模型,所以,本书对那些已受过数学训练,但需要一个向导,引导其由数学王国步入经济学殿堂的人来说,也是极有裨益的。基于同样的原因,本书不仅可以作为数学方法的教科书,而且也可以作为学习宏观经济理论、微观经济理论、经济增长与经济发展理论等课程的补充读物。
A.H.施利亚耶夫编著的《*金融数学基础(第2卷理论)》原版自1998年出版以来,被认为是“*金融数学方面深刻的一本著作”。全书共分两卷,每一卷都包含四章。卷的副题为:事实·模型。第二卷的副题为:理论。这两卷的内容既相互联系,又相对独立。读者可把本书看作一本“*金融数学全书”。 第二卷有关“理论”的四章是:“*金融模型中的套利理论”或“定价理论”:先是“离散时间”,再是“连续时间”。“套利理论”主要指资产定价的和第二基本定理:市场无套利机会等价于存在(局部)等价概率鞅测度,使得所有证券的折现价格过程为鞅(定理),并且当市场完全时,这样的鞅测度是的(第二定理)。这些定理在近二、三十年的研究中已经近乎尽善尽美。无论对数学还是对金融的发展都有深远影响,但所涉及的数学工具也越来越艰深。作者高瞻远瞩。抓住
金融投资是现代社会最活跃的经济活动之一。自1973年出现Black-Scholes公式以来,金融界以前所未有的速度接受数学模型和数学工具,于是出现了数学、金融、计算机和全球经济的融合。在金融学自身的吸引力和众多使用者需求的双重影响下,美国各大学纷纷开设了相应的课程,本书正是顺应这种趋势编写的。 本书主要讲解建模和对冲中使用的金融概念和数学模型。从金融方面的相关概念、术语和策略开妈,逐步讨论了其中的离散模型和计算方法、以Black-Scholes公式为中心的连续模型和解析方法,以及金融市场的风险分析及对冲策略等方面的内容。 本书作为金融数学的基础教材,适用于相关专业的本科生和研究生课程。
本书是国外介绍有限元方法的经典入门教程,主要介绍有限元方法的基本理论知识、一般原理、各类实体模型的问题求解和实际工业应用。本书内容丰富新颖, 涵盖了简单的弹簧和杆、梁的弯曲、平面应力/应变、轴对称、等参公式、三维应力、板的弯曲、热传导和流体介质、多孔介质、液压网络、电网和静电学中的流体流动、热应力、与时间相关的应力和热传导等,并由此引出有限元分析的高级课题。此外,本书还在不同阶段引入了弹性基本理论、直接刚度法、伽辽金残余法、势能原理、虚功原理等,以建立分析所需要的方程。