本书内容包括电子计算机上常用的各种数值计算方法,如插值法、二乘法、一致逼近、数值微积分、方程求根法、线性与非线性代数方程组解法、矩阵特征值与特征向量求法、常微分方程初值问题的解法、求解数理方程定解问题的差分法、有限元法等。还包含同类书中未见的一些内容,如广义佩亚诺定理、外推法及其在某些问题中的应用。书中重点讨论了各种计算方法的构造原理和使用,对稳定性、收敛性、误差估计和优缺点等也作了适当的介绍。 本书内容丰富,取材精炼;重点突出,推导详细,数值计算例子较多;内容安排由浅人深,每章都有概述、小结、复习题等,便于教学。本书可作理工科院校非计算数学专业研究生或高年级学生教材,也可供从事数值计算的科技工作者阅读参考。
《散乱数据拟合的模型、方法和理论(第二版)》是应用数学与计算数学中有关曲面及多元函数插值、逼近、拟合的入门书籍,从多种物理背景、原理出发,导出相应的散乱数据拟合的数学模型及计算方法,进而逐个进行深入的理论分析。书中介绍了多元散乱数据拟合的一般方法,包括多元散乱数据多项式插值、基于三角剖分的插值方法、Boole和与Coons曲面、Sibson方法或自然邻近法、Shepard方法、Kriging方法、薄板样条方法、MQ拟插值法、径向基函数方法、运动最小二乘法、隐函数样条方法、R函数法等。同时还特别介绍了近年来国际上越来越热并在无网格微分方程数值解方面有诸多应用的径向基函数方法及其相关理论。
蒙特卡洛方法是分析现实世界中工业问题的一种重要方法,它不必为了对问题进行简化而做出各种不现实的假设,而这些假设是确定性数学模型所不可避免的。本书介绍了一种研究系统动态行为的统一方法,其中蒙特卡洛方法是求解复杂现实问题的一种工具。这种综合性的方法把先前各种独立的技术、方法,比如产品的可靠性、维护需要、备件可用性等等成功地结合在一起。作者指出,使用这种方法能够提高效率。 本书的主要特点: 全面涵盖了系统工程和蒙特卡洛方法的基础理论和基本方法,使读者更容易理解涉及的知识和概念。 对方法的描述循序渐进,从简单统计过程的基本估计开始,经过多重积分的计算,再到复杂转移方程的求解,逐步深入。 对提出的每一种技术给出了大量的工业实例加以说明。 对某些典型的例子提供了软件(可通过FTP取得),