本书围绕数据模型及计算主线,按共性算法案例、数据工程领域中数据计算案例展开.第1章(概述篇)概述了数据建模与计算的思想与方法,提出了数据建模的多模型融合思想和数据计算的多算法集成策略,让模型和算法点亮数据的光芒.第2章到第6章(共性算法篇)例举了若干共性数据计算方法,包括几何模型重建、图像处理中的优化算法、数值微分算法、主成分分析方法与改进、数据拟合的梯度型优化算法.第7章到第17章(数据建模与计算篇)围绕统计生成性模型与数据机理模型融合、多算法集成创新主线,例举了十一个数据工程领域数据建模与计算的案例,涉及医学、金融、量化投资、图像处理、智能决策、音乐流派分类、疫情数据分析、功能服装设计、海洋数据分析等领域的数据分析及应用.后记概括了本书的主要特点和核心内容,强调了数据模型融合和算法集成是上策,对未来进
差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
很优化是运筹学的一个重要分支,在很多领域具有广泛的应用。本书系统地介绍了线性规划、无约束优化及约束优化的基础理论和求解方法,主要内容包括:线性规划的对偶理论与很优性条件、无约束优化的很优性条件、约束优