本书是关于积分方程的高精度算法的*本书.全书分为五章:*章阐述积分方程与积分算子以及相关的泛函分析理论,方便读者无需特殊准备便可以通读本书;第二章阐述数值积分,重点介绍多维积分与反常积分的外推和分裂外推方法,其中关于带参数的超奇积分的数值方法与外推是首次见于专著;第三、四、五章分别阐述Volterra型积分方程、Fredholm型积分方程和边界积分方程的高精度算法.本书取材新颖,与同类书的内容不雷同,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点,适合从事积分方程和边界元计算的科研工作者和工程计算人员参考,也适合计算数学和应用数学的博士生、硕士生和本科高年级学生作为专业或参考教材.
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书深入讨论Krylov子空间算法的核心思想和理论,结合算法的推导过程,介绍Krylov子空间算法和预处理技术的**进展,同时介绍Krylov子空间算法及预处理技术在电磁计算和数字图像处理中的应用.
本书系统地介绍模拟退火算法以及这一方法的并行实现和在优化、搜索、机器学习、统计物理中的应用。主要内容包括:模拟退火算法、并行摸拟退火算法、渐近收敛性、冷却进度表、模拟退火算法的应用、改进和变异、Boltzmann机及其存组合优化中的应用。
本书对扩展有限单元法的理论、应用和程序进行了较为详尽的论述。全书共分9章,包括4部分内容。第1部分(第1章~第3章)系统地综述扩展有限单元法理论的研究进展和主要应用,简述扩展有限单元法理论的基础知识(水平集法和线弹性断裂力学基础) ;第2部分(第4章)详细地论述扩展有限单元法的基本理论;第3部分(第5章~第8 章)详细介绍扩展有限单元法在教聚裂纹扩展、非均质问题、动态断裂问题和剪切带演化领域中的应用;第4部分(第9章)介绍扩展有限单元法的程序设计,给出主要的程序代码,将有利于读者尽快掌握扩展有限单元法的程序实现,并在此基础上应用该方法解决工程实际问题。
《反问题的数值解法(典藏版)》系统介绍了数学物理反问题求解的正则化方法,主要包括适定与不适定问题的基本概念:反问题、不适定性及其与*类算子方程的联系,基于算子广义逆理论的各种推广,几种提高正则解精度和计算效率的迭代正则化方法、离散正则化方法,各种正则化算法的数值实现,带有工程、物理与经济应用背景有启发性的实例,在附录中给出了*近的国内外研究成果和示范性MALAB语言源程序。 《反问题的数值解法(典藏版)》适合于数学专业科研人员、大学教师使用,亦可供从事科学和工程领域中反问题数值计算方法研究的科研人员,高等院校的教师、研究生和高年级大学生参考。
无
本书系统地论述了有限元方法的数学基础理论。本书以椭圆偏微分方程的边值问题为例,介绍了协调有限元方法以及非协调等非标准有限元方法的数学描述、收敛条件和性质、有限元解的先验和后验误差估计以及有限元空间的基本性质,其中包括作者多年来的部分研究成果。
本卷包括一元微积分、多元微积分、复变函数、常微分方程、矩阵分析与线性系统、系统辨识、偏微分方程、积分方程共8部分内容。书中从理论与应用方面深入浅出地阐述了各分支中的基本概念、基本理论与基本方法。内容注重背景,强调应用,便于读者加深理解、掌握与应用。本书可供理、工、农、医、经管等领域的广大科技人员,大、中专院校教师、学生及研究生使用。
This book is a standard for a complete de*ion of the methods for unconstrained optimization and the solution ofnonlinear equations....this republication is most welcome and this volume should be in every library. Of course, there exist more recent books on the topics and somebody interested in the subject cannot be satiated by looking only at this book. However, it contains much quite-well-presented material and I recommend reading it before going ,to other.publications.
Many different mathematical methods and concepts are used in classical mechanics: differential equations and phase flows, smooth mappings and manifolds, Lie groups and Lie algebras, symplectic geometry and ergodic theory. Many modern mathematical theories arose from problems in mechanics and only later acquired that axiomatic-abstract form which makes them so hard to study.
《有限元分析及应用》强调有限元分析的工程概念、数学力学基础、建模方法以及实际应用,全书包括3篇,共分12章;第1篇为有限元分析的基本原理,包括第1章至第5章,内容有:有限元分析的力学基础、有限元分析的数学求解原理、杆梁结构的有限元分析原理、连续体弹性问题的有限元分析原理;第2篇为有限元分析的扩展内容,包括第6章至第8章,内容有:有限元分析中的单元性质特征与误差处理、有限元分析中的复杂单元及实现、有限元分析的应用领域(结构振动问题,弹塑性问题,传热与热应力问题);第3篇为有限元分析的建模、软件平台及实例分析,包括第9章至第12章,内容有:有限元分析的实现与建模、有限元分析的自主程序开发以及与ANSYS平台的衔接、基于ANSYS平台的有限元建模与分析、基于MARC平台的有限元建模与分析。《有限元分析及应用》还给出
本书主要介绍了一般的有限元基本理论和有限元计算技术,以及在弹性力学、结构动力学、流体运动、传质与传热等问题中的有限元分析方法和典型应用;介绍了非线性有限元分析方法,包括材料非线性、接触非线性、大变形大应变和结构非线性等方面的有限元理论内容;还介绍了其他一些与有限元方法相关的现代数值计算方法。另外,书中突出了有限元方法的计算技术,如在MATLAB下的编程方法;介绍了多种工程应用的实例和研究结果。 本书内容精练,以工程中的问题类型为脉络介绍有限元的应用,以机械工程、土木工程等工科相关专业本科生、研究生为读者对象,亦可供从事数值分析的工程技术人员参考。
有限元法是工程实际中强有力的数值分析方法之一。美国MSC公司研制的MSC.Marc软件是众多有限元通用软件中的杰出代表。本书把有限元理论和MARC实现有机地结合起来,使读者能深入体验有限元理论与MARC软件之间的紧密关联。学习本书不仅可以循序渐进地掌握有限元基本理论,而且可以培养应用MARC软件解决工程实际问题的能力。全书共分8章,第1章介绍有限元的基本知识,第2章介绍MARC软件的基本用法,第3章至第8章分别介绍平面问题、空间问题、空间轴对称问题、杆系结构、板壳问题以及结构动力问题的有限元法,第3章至第8章每章均有用MARC求解相应工程问题的实例。本书特别适合用力学、机械、土木、水利等领域的科技工作者使用MARC软件的工具和参考书,也可作为理工科院校有关专业高年级本科生、研究生及教师学习有限元理论与MARC软件的教材或参考书。
本书介绍了在计算机图形学、机器人和工业设计领域逐渐兴起的几何算法的设计和实现。计算几何中使用的基本技术包括多边形三角剖分、凸包、Voronoi图、排列、几何查找、运动计划等。虽然自主处理只涉及数学基础知识领域的一部分,但是它却和当今该研究领域的前沿课题相关。因此,专业的程序员会发现本书是一本不可多得的参考书。 与上一版相比,本版包括以下几方面的新内容:多边形三角剖分的*化算法、平面点定位、3D凸包的构造、关于射线段和射线三角的相交算法、多面体中的点等。此外,本版还增加新的一章——“资料来源”,提供了关于各个主题的更详尽的补充资料。 本书的一个新特点就是为很多算法增加了可运行的C语言代码,以及如何在现实中实现它们的相关讨论。与第1版相比,本版中的代码有了大幅度的改善(更高效、更稳定),
Since the publication of the first edition, I have received many communications from readers all over the world. It is my great pleasure to thank the following people for their comments, corrections and encouragements: Prof. Jim Austin, Prof. Friedrich L. Bauer, Dr. Hassan Daghigh Dr. Deniz Deveci, Mr. Rich Fearn, Prof. Martin Hellman, Prof. Zixin Hou, Mr. Waseem Hus- sain, Dr. Gerard R. Maze, Dr. Paul Maguire, Dr. Helmut Meyn, Mr. Robert Pargeter, Mr. Mok-Kong Shen, Dr. Peter Shiu, Prof. Jonathan P. Sorenson, and Dr. David L. Stern. Special thanks must be given to Prof. Martin Hellman of Stanford University for writing the kind Foreword to this edition and also for his helpful advice and kind guidance, to Dr. Hans WSssner, Mr. Alfred Hofmann, Mrs. Ingeborg Mayer, Mrs. Ulrike Stricker, and Mr. Frank Holzwarth of Springer-Verlag for their kind help and encouragements during the preparation of this edition, and to Dr. Rodney Coleman, Prof. Glyn
This book grows out of the lectures the first author gave in the summer of 2002 in the Institute of Computational Mathematics of Chinese Academy of Sciences.The purpose of the lectures was to present a concise introduction to the basic ideas and mathematical tools in the construction and analysis of finite element methods for solving partial differential equations So that the students can start to do research on the theory and applications of the finite element method after the summer course.Some of the materials of the book have been taught several times by the authors in Nanjing University and Peking University.The current form of the book is based on the lecture notes which are constantly updated and expanded reflecting the newest development of the topics through the years.
本书是为工程硕士数值分析课程编写的教材,比较系统地介绍了数值分析学科的基本方法和理论,选材着重基础,也强调方法在计算机上如何实现,并讨论了一些实际问题中与数值计算有关的数学模型。 本书第1章是数学模型和数值计算一般问题的引论,其他各章内容包括求解线性代数方程组的直接方法和迭代方法、求解非线性方程和方程组的数值方法、矩阵特征值问题的计算方法、函数的插值和逼近、数值积分与数值微分以及常微分方程初值问题的数值方法。各章都配有相关数学模型的例题,章末有习题和计算实习题。书末还附有计算实习所用工具MATLAB的简明介绍。 本书可作为工程硕士研究生教材,也可作为其他理工科各专业本科生或研究生教材,并可供工程技术人员和科研人员参考。
本书是陈宝林教授在多年实践基础上编著的.书中包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K?T条件、无约束*化方法、约束*化方法、整数规划和动态规划等内容.《*化理论与算法》含有大量经典的和新近的算法,有比较系统的理论分析,实用性比较强;定理的证明和算法的推导主要以数学分析和线性代数为基础,比较简单易学。