本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
本书以简明易懂的方式,系统地介绍了无网格法的基本理论及各种代表性算法,使初学者很容易掌握这一计算方法的原理和知识。在内容组织上,以固体力学作为应用背景,以无网格法 介点原理 为主线,较为全面地介绍了无网格全局弱式法、局部弱式法、配点类方法、边界型方法和结合式方法等各类离散方法的基本原理及其算法。此外,对移动*小二乘近似法(MLS)的简化和稳定化、介点原理的应用,以及对配点类方法的完善和发展,是本书重点阐述的内容。《BR》
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书是系统地介绍各类多维奇异积分的高精度算法的专著.全书共5章:第1章介绍面型与点型奇异积分(包括弱奇异、Cauchy强奇异、Hadamard超奇异积分)的概念与存在条件及一些基本性质,并介绍各类奇异积分算子的定义和基本性质;第2章简略介绍正常积分的数值方法和加速收敛方法;第3章主要论述一维各类奇异积分与含参数的奇异积分的高精度算法以及各类奇异积分的加速收敛方法,同时给出了外推的稳定性分析;第4章主要论述各类多维奇异积分与含参的奇异积分的高精度算法以及各类奇异积分的加速收敛方法;第3、4章是本书的核心内容;第5章介绍奇异积分与奇异积分算子的渐近展开式.本书取材新颖,算例翔实,所提供的算法具有计算复杂度低、精度高、并行度高和拥有后验误差估计等特点.
《Voronoi图及其应用》在介绍Voronoi图相关概念和性质的基础上,侧重介绍Voronoi图的构造和应用方面的算法。本书主要内容包括离散点集的Voronoi图与Delaunay三角部分、多边形的Voronoi图、约束Delaunay三角部分以及重心Voronoi图的基本概念、性质、构造算法,及其在多边形剖分、几何搜索、多边形求交、可见性计算、路径规划、碰撞检测、骨架计算、文字特征提取、半色调图像生成以及信息可视化等方面的应用。 《Voronoi图及其应用》可以供从事相关研究的高校教师、科研人员参考,也可作为高等院校计算机相关专业研究生的教材和参考书。本书由杨承磊、吕琳、杨义军以及孟祥旭合著而成。
本书是编者在《微分方程数值解法》(第三版)的基础上修订而成的。本次修订的宗旨是加强方法及其应用,考虑到不同院校的需要,仍然保留常微分方程数值解法这一章。为了更方便教学,采取先介绍有限差分法,后介绍GMerkin有限元法,去掉原来的第七章,将离散方程的有关解法与椭圆方程的差分法和有限元法合并,同时增设了一些数值例子,适当删减部分理论内容,突出应用,降低难度。本书包括六章,章为常微分方程数值解法,第二章至第四章为椭圆、抛物和双曲偏微分方程的有限差分法,第五章、第六章为Galerkin有限元法。 本书是为信息与计算科学专业编写的教材,也可以作为数学与应用数学、力学及某些工程科学专业的教学用书,对于从事科学技术、工程与科学计算的专业人员也有参考价值。
本书论述科学和工程中的非线性问题的数值解法,包括有限维系统(代数系统)和无限维系统(常微分方程和偏微分方程)。着重论述直接问题的局部和全局牛顿方法及反问题的高斯一牛顿方法。书中的“仿射不变性”是指所阐述的算法及其收敛性在四类仿射变换下是不变的。相对于传统教科书而言,利用“仿射不变性”这一独特方式来论述,令定理和证明更加简洁,使构造完全自适应算法成为可能。大量的数值示例、比较图表及练习使得本书非常适合计算数学课程;同时,本书开辟了未来研究的许多可能方向。
本书共四章,包括解析平面几何证明题,解析平面几何中除证明题以外的其他问题,解立体几何,解解析几何,后又提供了8个附录,以丰富本书内容。
*化算法是20世纪中叶发展起来的一门学科,既有久远的历史渊源,又有广阔的应用前景。在计算机时代,*化算法更呈现出异彩纷呈的发展态势。刘振宏、马绍汉编著的《离散*化算法》共八章,前四章介绍*化算法的经典内容,后四章包含了*化算法近年来的发展,如逆*化问题和近似算法。书中还讲述了作者在组合优化领域所做的创造性的工作。为便于消化和理解书中的内容,每章末附有习题和参考文献。 《离散*化算法》可作为高等院校运筹学与控制论、计算机应用、系统工程等学科的高年级本科生、研究生的教材,也可供从事这方面工作的科技工作者参考。
本书是作者在多年来为四川省部分高校相关理工科专业的硕士研究生、工程硕士生、本科生开设*化方法课程的教学实践和自编教材的基础上,对搜集整理的大量材料做了充分酝酿,反复修改而成的。 教材在课程内容的处理上遵循如下原则:突出方法,注重概念,适当介绍算法的基本理论;强调应用,加强算法实现的基本训练;引导学生主动思考,激发学生的学习兴趣;通过算法到程序设计有序而系统的训练,提高学生程序设计的能力。 全书分为上、下两篇。上篇共9章,介绍无约束*化方法,包括基础知识(介绍凸集的基本性质,函数及凸函数的*性条件),*化问题及无约束*化算法综述,以及求解无约束*化问题的各种算法。下篇共8章,介绍约束*化方法,包括线性规划问题及其解法,非线性规划的*化条件及常用的算法,以及离散系统的动态规划方法等。
本书是华夏英才基金资助出版的专著,是龙驭球院士及其研究组20多年来在新型有限元方面研究成果的系统论述。全书共20章。除首尾两章外,其余18章分为3篇:第1篇是变分原理进展,介绍分区和含参变分原理2项成果;它们为构造新型有限元起理论指导作用。第2篇是有限元法进展初论,重点介绍广义协调元;这是在协调元与非协调元之间另辟的新路,使收敛问题得到合理解决,单元构造方案可以灵活优选,学科内容得到充实更新;补充介绍4项成果,包括分区混合元法、解析试函数法、四边形面积坐标法和样条函数有限元法,在本书中起锦上添花作用。结合7项成果的论述,书中还介绍了相关的新单元,总共108个,汇集在一起,可供参考。 本书可作为高等学校力学、土木、机械等专业研究生和高年级本科生的教材和参考书,也可供相关领域教师和科技人员参考
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、短超字符串、背包、装箱问题、小时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。 本书可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及高年级本科生的教学用书,对
THE major part of this book (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which has been only slightly changed in the present edition.
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书以作者20多年潜心研究的成果为主线,结合国内外相关研究的前沿思想和成果,较系统地介绍光滑约束优化快速算法的理论构架、全局收敛性及收敛速度的分析论证,并对算法进行了大量的数值试验和分析。全书分为12章:第1—3章介绍相关基础知识及快速算法模型框架,第4—7章讨论一般优化和极大极小优化的序列二次规划算法,第8—10章论述序列线性方程组算法,第11章研究互补约束优化的序列二次规划算法和序列线性方程组算法,第12章论述序列二次约束二次规划算法。 本书可作为运筹学、计算数学、管理科学、工程技术等专业的研究生教学或辅导用书,亦可作为相关领域的科研及工程技术人员的参考用书。
《*化方法应用分析》系统讲述如何使用*化科学来解决实际问题并创造*化价值。精心选取了石油、化工、机械、冶金、能源、电力电子、航空航天、运输、通信、计算、网络、农业、生物、医药、经济、管理等领域的七十多个应用实例,系统阐述了*化方法在各行各业的广泛应用。详细给出了实际优化问题,从优化模型的建立到优化模型的求解计算,一直到优化结果的分析与比较的全过程,通俗易懂,使读者近距离全面了解优化技术是如何解决实际问题的。 《*化方法应用分析》可作为高等院校自动化、控制、系统工程、工业工程、计算机、应用数学、经济、管理、化工、材料、机械、能源等相关专业的教材,也可作为有关研究人员和工程技术人员的参考书。
量子信息学是20世纪80年代以量子物理学为基础,融人计算机科学、经典信息论形成的新兴交叉学科,主要包括量子通信和量子计算两个分支。本书是关于量子计算机研究,分上、下两册出版。上册是关于量子计算机原理和物理实现,下册是关于量子纠错和容错量子计算。 由李承祖和陈平形等编著的《量子计算机研究(上)——原理和物理实现》为上册,内容包括计算机从经典到量子、量子位和量子逻辑门、量子算法、量子计算机动力学模型、离子阱量子计算机、基于半导体量子点的量子计算机、固体超导量子计算机、绝热量子计算、簇态和簇态上的量子计算等。 《量子计算机研究(上)——原理和物理实现》兼有基础性和系统性特色,既包含学科主要基础理论,又系统介绍了当前该领域前沿主要研究方向和动态。全书体系清晰,逻辑严谨,分析深入,
本书重点介绍有限单元法的基本理论、程序设计,以及在工程中的应用。主要内容包括:以弹性力学为基础的有限元的概念和基本理论,等参有限元的基本理论和形函数的统一构造方法,主要的高效数值算法和有限元程序设计,以及弹塑性问题、结构动力问题、温度场与温度应力问题、混凝土徐变和粘弹性问题、板壳问题、混凝土细观力学问题。部分章节还包括了作者近年来的*研究成果。本书后附有5个有限元教学程序及其使用说明,供不同专业和不同教学对象选择使用,有的程序可以直接用来解决生产实际问题。 本书可作为水利、土木类相关专业研究生和工程力学专业本科生的教材,也可供高等院校相关专业教师和工程技术人员参考。