差分方程描述随离散时间变化的系统的规律性,在自然科学、工程技术和社会现象中有着广泛的应用.本教材在大学数学课程的基础上较系统地介绍了差分方程的基本概念、求解方法,线性差分方程组的基本理论,差分方程的定性、稳定性分析办法和分支理论的知识,特别是Liapunov函数、差分不等式和比较定理、鞍结点分支、Flip分支和不变解曲线的分支等知识,以便为凑者进行差分方程的应用和理论研究提供基础.书中给出了大量的应用例子来展示差分方程或差分方程组在物理学、经济学、生态学和传染病动力学等方面的广泛应用,包括我们近年来在研究人口增长、艾滋病和结核病传播、甲型流感防控等问题中建立的差分方程模型的分析和应用.这是一本差分方程基础知识介绍和应用研究相结合的教材,我们希望本书能引导读者在差分方程的应用方面尽快地从
本书以一维杆单元为例,系统地阐述了有限单元法的基本原理、数值方法、程序实现和固体力学领域各类问题中的应用。 全书共13章。前6章为有限单元法的理论基础,包括直接刚度法,一维杆的“强”形式与“弱”形式,单元和插值函数的构造,加权余量法与虚功原理建立有限元格式,变分原理建立有限元格式。后7章为专题部分,包括线性静态有限元分析,线性动态有限元分析,几何非线性有限元分析,材料非线性有限元分析,复合材料多尺度分析,结构灵敏度分析,桁架结构有限元教学软件EFESTS。本书通过一维杆单元详尽地展示了有限单元法的细节,使读者更容易地学习有限元理论,这是作者的基本出发点,也是本书的特色。
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书系统地介绍模拟退火算法以及这一方法的并行实现和在优化、搜索、机器学习、统计物理中的应用。主要内容包括:模拟退火算法、并行摸拟退火算法、渐近收敛性、冷却进度表、模拟退火算法的应用、改进和变异、Boltzmann机及其存组合优化中的应用。
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
《解析数论研究》中作者采用正确的方法,解决了大整数表为两个平方与一个素数之和这个著名猜想,给出能表为两平方和的整数的分布渐近公式这一经典问题的带有O型余项的结果,并对相邻素数差问题、奇数Goldbach猜想、三维除数问题等著名问题进行重新处理(以前一些处理有问题),给出适当的结果。《解析数论研究》适合从事解析数论研究的专家学者阅读。
本书从信号处理的角度阐述小波分析的基本原理及其应用。从信号时-频联合分析引入小波变换,将信号的多分辨率分析及Mallat算法作为全书的重点,并在此基础上,进一步阐述了双正交小波多分辨率分析、小波包多分辨率分析、提升小波应用,还讲述了小波分析在奇异性检测、去噪及数据压缩中的应用。为鼓励读者将理论学习与上机实验结合以提高学习效率,书中提供了许多MATLAB仿真程序,供读者参考。 本书适用于从事信号处理、图像处理等方面工作的工程技术人员,也可作为理工科各专业高年级本科生、研究生学习小波理论与应用的参考书。
ANSYSl3.OLs-DYNA作为世界上著名的通用显式非线性动力分析程序,能够模拟真实世界的各种复杂几何非线性、材料非线性和接触非线性问题,特别适合求解各种二维、三维非线性结构的高速碰撞、爆炸和金属成形等非线性动力冲击问题,同时可以求解传热、流体及流固耦合问题。 全书主要分为两大部分:部分介绍了ANSYSl3.0LS—DYNA软件所涉及的基础知识、应用方法及要点,主要包括:CAE技术及其发展、单元的特性及定义、材料模型及其选用、有限元建模技术、加载与约束、求解及控制、后处理等。第二部分结合实例介绍了LS-DYNA的一些典型应用,主要包括:工业产品跌落测试分析、冲压回弹分析、鸟撞风挡分析、轧制成形分析、冲击分析、侵彻分析等,并在其中穿插讲述了一些新的模块、新的方法。 本书适合理工科院校本科高年级学生和研究生作为专业学
本书介绍了常用数值计算方法的构造和使用,内容包括线性代数方程、非线性方程和方程组、常微分方程和方程组的数值解法,插值法与数值逼近,数值积分,矩阵的特征值和特征向量的计算等。同时,对数值计算方法的计算效果、稳定性、收敛性、误差分析、适用范围及优缺点也作了必要的分析与介绍。 本书可作为高等院校各类工科专业研究生和数学系各专业本科生教材或参考用书,也可供从事科学与工程计算的科研工作者参考。
本书是作者在多年为理工科硕士研究生讲授计算方法课程的基础上编写而成的。全书共分11章,内容包括:计算方法概论,数值计算理论基础,非线性方程求根,线性与非线性方程组的数值解法,矩阵特征值与特征向量的计算,插值与逼近,数值积分与微分,常微分方程初值问题与边值问题的数值解法。本书选编了较多不同层次的例题和习题供教师选择,并在各章引人数学软件Matlab的应用实例,以提高学生的学习兴趣和应用能力。对某些较深入的内容,本书以附录形式放在相应章节的后面,教师可以根据学时选讲或不讲,不影响整个体系。本书内容丰富,阐述简明易懂,注重理论联系实际。可作为理工科大学非计算数学专业的研究生或高年级本科生的教材(适合36-64学时),也可作为科技工作者的参考书。
该书以索伯列夫空间为框架,介绍抽象的变分形式和Ritz-Galerkin法,基于peano余项估计介绍索伯列夫空间插值理论,从而建立标准有限元法的一般误差估计。还用相当篇幅讨论非标准有限元,包括非协调元、杂交元和混合元。特别还用一章介绍边界元法及多尺度Galerkin快速算法。
本书深入浅出地介绍了LINGO的基础知识、用LINGO语言描述现实问题的方法和用Excel处理数据的方法,重点是这两种软件在解决各种优化问题以及在数学建模中的应用,通过丰富的实例介绍了把实际问题转化为数学模型的方法,以及综合运用LINGO等软件来求解模型的手段和技巧。 本书的主要内容包括LINGO的基本用法、LINGO在图论和网络模型中的应用、用LINGO求解非线性规划和多目标规划、LINGO与其他软件之间的数据传递、Excel在数学建模中的应用和LINGO在数学建模中的应用实例等。 本书可作为高等院校研究生、本科生和专科生的数学建模培训教材或参考书,也是从事数学建模教学和建模竞赛指导的教师、对数学建模有兴趣的科研人员有价值的参考书,还可以作为一本内容较全面的LINGO软件使用和培训教材。
《数值计算方法及其程序实现》由编著者多年以来承担的暨南大学物理系硕士研究生必修课"数值计算方法"的讲授内容汇集而成,其内容包括七个部分:绪论、误差和数据处理、线性方程组的数值解法、非线性方程(组)的数值解法、数值积分与微分、常微分方程(组)的数值解法、偏微分方程的数值解法。这些内容通过例题分多个步骤予以展现。首先简要介绍数 值计算的基本方法和理论,再给出实现数值计算的逻辑流程构建,进而在Fortran和Matlab环境下编制计算程序,并分别VisualFortran6.0及Matlab6.5环境下运行,终获得数值计算结果及其图示,同时提供了Fortran和Matlab两种计算机语言编写的相关程序。本书可作为数值计算方法课程的教材或参考书,也可作为计算物理及其相关学科的基础参考书。
本书是有限元方法早的出版物,第1版诞生于1967年,历经近40年和前后5版的不断更新,从结构、固体扩展到流体,从一卷本扩展到三卷本,凝聚了本书作者近40年的研究成果,荟萃了近千篇文献的精华,培养了全世界几代计算固体力学的师生和工程师,成为有限元方法的经典名著。 本书的第1卷覆盖了在线性问题内容中有限元近似的基本方面,涉及了在稳态和瞬态情况下的二维和三维弹性、热传导和电磁问题的典型例子,介绍了有限元计算程序的结构。在第3卷中介绍了有限元在流体力学中的应用。 本卷为第2卷——固体力学篇,涵盖了计算固体力学的前沿课题,描述了非线性系统的特殊问题,如材料、几何和接触非线性问题的有限元格式、求解和例题;同时也包含了结构力学分析中板和壳体的有限元格式、解答和应用。二者相得益彰,读者将从连续体与结构的
本书建立了一种求解N-S方程及湍流模型的分裂有限元方法。该方法有效克服了传统有限元求解N-S方程时存在的非线性效应、不可压缩性约束和计算量大的三大困难,为解决大气运动、海洋流动、轴承润滑等湍流运动提供了关键的数值模拟技术和方法支撑。
Since the publication of the first edition, I have received many communications from readers all over the world. It is my great pleasure to thank the following people for their comments, corrections and encouragements: Prof. Jim Austin, Prof. Friedrich L. Bauer, Dr. Hassan Daghigh Dr. Deniz Deveci, Mr. Rich Fearn, Prof. Martin Hellman, Prof. Zixin Hou, Mr. Waseem Hus- sain, Dr. Gerard R. Maze, Dr. Paul Maguire, Dr. Helmut Meyn, Mr. Robert Pargeter, Mr. Mok-Kong Shen, Dr. Peter Shiu, Prof. Jonathan P. Sorenson, and Dr. David L. Stern. Special thanks must be given to Prof. Martin Hellman of Stanford University for writing the kind Foreword to this edition and also for his helpful advice and kind guidance, to Dr. Hans WSssner, Mr. Alfred Hofmann, Mrs. Ingeborg Mayer, Mrs. Ulrike Stricker, and Mr. Frank Holzwarth of Springer-Verlag for their kind help and encouragements during the preparation of this edition, and to Dr. Rodney Coleman, Prof. Glyn
《差分进化算法理论与应用(精)》是著者(张春 美)在北京理工大学博士研究期间取得成果的基础上 ,进一步深入研究、充实整理后形成的,全书共分为 7章。内容包括差分进化算法、种群规模适应性差分 进化算法、参数适应性分布式差分进化算法、分布式 Memetie差分进化算法等。 《差分进化算法理论与应用(精)》可以为自动化 、计算机科学、管理科学等相关学科的教师、学生和 工作人员在学习和生产实践中提供参考。