本书主要讲述了抽象整数、带有单位的数量、数的可整除性、普通分数、小数、比和比例等内容,语言通俗易通;结构上划分七章,并从最基础的 理解数字 开始,又划分多个知识点,递进式讲述,衔接连贯.每章节在描述时,有的会配有具体例子参考,不脱离实际操作,使读者更快速掌握知识,也能够激发读者的阅读兴趣,启迪思维,提高对算术的认识. 本书适用于中小学师生、数学相关专业的学生以及对算术有专研精神的兴趣爱好者参考阅读.
俄罗斯历来注重数学理论的研究,并且具有鲜明的特色,在计算数学领域的研究也有许多独特之处。 由H.C.巴赫瓦洛夫、热依德科夫、柯别里科夫所著的《数值方法(第5版俄罗斯数学教材选译)》是数值方法方面的经典教材,在俄罗斯影响很大。本书视角新颖,内容翔实,阐述系统,主要内容包括:计算误差,插值与数值微分,数值积分,函数逼近,多维问题,数值代数方法,非线性方程组和*化问题的解,常微分方程、偏微分方程和积分方程的数值求解方法。 本书可供高等院校计算数学及相关专业的学生、教师和研究人员使用参考。
【内容简介】 本书汇集了第16届至第20届国际数学奥林匹克竞赛试题及解答。本书广泛搜集了每道试题的多种解法. 且注重初等数学与高等数学的联系,更有出自数学名家之手的推广与加强。本书可归结出以下四个特点,即收集全、解法多、观点高、结论强。 本书适合于数学奥林匹克竞赛选手和教练员、高等院校相关专业研究人员及数学爱好者使用.
本书详细地介绍了计算机中常用的数值计算方法,主要内容包括:解线性方程组的迭代法、线性最小二乘问题、矩阵特征值问题、解非线性方程组的数值方法、常微分方程初值和边值问题的数值解法、函数逼近。本书每章末均附有丰富、实用的习题。
《Voronoi图及其应用》在介绍Voronoi图相关概念和性质的基础上,侧重介绍Voronoi图的构造和应用方面的算法。本书主要内容包括离散点集的Voronoi图与Delaunay三角部分、多边形的Voronoi图、约束Delaunay三角部分以及重心Voronoi图的基本概念、性质、构造算法,及其在多边形剖分、几何搜索、多边形求交、可见性计算、路径规划、碰撞检测、骨架计算、文字特征提取、半色调图像生成以及信息可视化等方面的应用。 《Voronoi图及其应用》可以供从事相关研究的高校教师、科研人员参考,也可作为高等院校计算机相关专业研究生的教材和参考书。本书由杨承磊、吕琳、杨义军以及孟祥旭合著而成。
本书讨论处理无约束**化问题的数值方法,主要包括Newton法。共轭梯度法、拟Newton法、Powell直接方法以及非线性小二乘法,并且阐明了其理论、应用和发展动向。
本书是编者在《微分方程数值解法》(第三版)的基础上修订而成的。本次修订的宗旨是加强方法及其应用,考虑到不同院校的需要,仍然保留常微分方程数值解法这一章。为了更方便教学,采取先介绍有限差分法,后介绍GMerkin有限元法,去掉原来的第七章,将离散方程的有关解法与椭圆方程的差分法和有限元法合并,同时增设了一些数值例子,适当删减部分理论内容,突出应用,降低难度。本书包括六章,章为常微分方程数值解法,第二章至第四章为椭圆、抛物和双曲偏微分方程的有限差分法,第五章、第六章为Galerkin有限元法。 本书是为信息与计算科学专业编写的教材,也可以作为数学与应用数学、力学及某些工程科学专业的教学用书,对于从事科学技术、工程与科学计算的专业人员也有参考价值。
本书共四章,包括解析平面几何证明题,解析平面几何中除证明题以外的其他问题,解立体几何,解解析几何,后又提供了8个附录,以丰富本书内容。
*化算法是20世纪中叶发展起来的一门学科,既有久远的历史渊源,又有广阔的应用前景。在计算机时代,*化算法更呈现出异彩纷呈的发展态势。刘振宏、马绍汉编著的《离散*化算法》共八章,前四章介绍*化算法的经典内容,后四章包含了*化算法近年来的发展,如逆*化问题和近似算法。书中还讲述了作者在组合优化领域所做的创造性的工作。为便于消化和理解书中的内容,每章末附有习题和参考文献。 《离散*化算法》可作为高等院校运筹学与控制论、计算机应用、系统工程等学科的高年级本科生、研究生的教材,也可供从事这方面工作的科技工作者参考。
本书是作者在多年来为四川省部分高校相关理工科专业的硕士研究生、工程硕士生、本科生开设*化方法课程的教学实践和自编教材的基础上,对搜集整理的大量材料做了充分酝酿,反复修改而成的。 教材在课程内容的处理上遵循如下原则:突出方法,注重概念,适当介绍算法的基本理论;强调应用,加强算法实现的基本训练;引导学生主动思考,激发学生的学习兴趣;通过算法到程序设计有序而系统的训练,提高学生程序设计的能力。 全书分为上、下两篇。上篇共9章,介绍无约束*化方法,包括基础知识(介绍凸集的基本性质,函数及凸函数的*性条件),*化问题及无约束*化算法综述,以及求解无约束*化问题的各种算法。下篇共8章,介绍约束*化方法,包括线性规划问题及其解法,非线性规划的*化条件及常用的算法,以及离散系统的动态规划方法等。
本书系统总结了到本世纪初为止近似算法领域的成果,重点关注近似算法的设计与分析,介绍了这个领域中重要的问题以及所使用的基本方法和思想。全书分为三部分:部分使用不同的算法设计技巧给出了下述优化问题的组合近似算法:集合覆盖、施泰纳树和旅行商、多向割和k-割、k-中心、反馈顶点集、短超字符串、背包、装箱问题、小时间跨度排序、欧几里得旅行商等。第二部分介绍基于线性规划的近似算法。第三部分包括四个主题:在一个格中找一个短向量、计数问题的可近似性、基于PCP定理的近似困难性以及未解决的问题等,这些问题都是近似算法领域中的前沿研究内容。 本书可作为计算机科学、应用数学、运筹学、信息科学与网络工程、物流与交通运输、管理科学与工程、生命科学、电子科学与技术等学科专业的研究生及高年级本科生的教学用书,对
THE major part of this book (Chapters I, II, III and V) is not very different from what was in the first two English editions (1959 and 1970).This is a natural result of the fact that the basic equations and conclusions of elasticity theory have long since been established. . The second edition included a chapter on the theory of dislocations in crystals, written jointly with A.M.Kosevich, which has been only slightly changed in the present edition.
《Mathematica基础及其在数学建模中的应用(第2版)》是作者结合多年的Mathematica与数学建模课程教学实践编写的,其内容包括Mathematica软件介绍、Mathematica应用基础、Mathematica在高等数学中的应用、Mathematica在线性代数中的应用、Mathematica在概率统计中的应用、利用Mathematica编程、Mathematica在数值计算及图形图像处理中的应用、Mathematica在绘制分形图中的应用、Mathematica在数学建模中的应用共9章。书中配备了较多关于Mathematica与数学建模的实例,这些实例是学习Mathematica与数学建模必须掌握的基本技能。 《Mathematica基础及其在数学建模中的应用(第2版)》由浅入深,由易到难,可作为学习Mathematica与数学建模的自学用书,也可以作为数学建模培训教材。
本书重点介绍有限单元法的基本理论、程序设计,以及在工程中的应用。主要内容包括:以弹性力学为基础的有限元的概念和基本理论,等参有限元的基本理论和形函数的统一构造方法,主要的高效数值算法和有限元程序设计,以及弹塑性问题、结构动力问题、温度场与温度应力问题、混凝土徐变和粘弹性问题、板壳问题、混凝土细观力学问题。部分章节还包括了作者近年来的*研究成果。本书后附有5个有限元教学程序及其使用说明,供不同专业和不同教学对象选择使用,有的程序可以直接用来解决生产实际问题。 本书可作为水利、土木类相关专业研究生和工程力学专业本科生的教材,也可供高等院校相关专业教师和工程技术人员参考。
王自强、曹俊英编写的《统计计算及其程序实现》以统计理论、数值分析、*优化理论与算法为基础,以MATLAB软件及R软件为平台,并把统计理论、数值分析、*优化理论与算法和计算机实现有机地结合起来,让读者理解和掌握统计方法解决实际问题的全过程。本书的主要内容有:基本的数值计算方法、* 优化算法、统计计算数值方法和多元统计方法,其中包括线性方程组的数值解法、非线性方程的数值解法、数值积分、线性规划问题的数值计算、非线性优化的数值计算、多元相关与回归分析、方差分析、线性与非线性模型及应用多元分析。 本书可以作为理工、经济、管理、统计等专业的高年级本科生和研究生的数理统计、*优化方法和数值分析的辅导教材或教学参考书,也可以作为统计计算课程的教材。
本书系统地阐述有限单元法的基本原理、数值方法、计算机程序设计技术及其应用。全书共12章,内容包括有限元法预备知识——加权余量法、杆系结构问题、弹性平面问题、弹性空间问题、热传导问题、流体力学问题、动力学问题、板壳结构问题等,重点是有限元法的基本原理和数学公式表达的建立,以及单元插值函数的构造。后以一个线弹性静力学教学程序FEMED为例介绍有限元程序设计,使读者初步掌握有限元编程的基本方法并具备通用程序开发能力。 本书的特点是由浅入深,简明易懂。书中精选了大量例题,通过这些例题,学生可以逐步掌握有限元法的基本理论和方法,特别适合于教学学时偏少的情况。 本书可作为高等院校力学、机械、土木、水利、航空航天等专业本科生和研究生的教材,也可作为其他相关专业科技人员的参考书。
本书全面地介绍了科学计算中解各种主要问题的数值方法,包括线性和非线性方程、小二乘法、特征值、*化、插值、积分、常微分方程和偏微分方程、快速傅里叶变换和*数生成。 本书的特点是: 以使用算法的读者为对象,重点讲授算法背后的思想和原理,而不是算法的详细分析。 强调敏感性和病态性等概念,对同一问题的不同算法进行比较和评价,提高读者对算法的鉴赏能力。 对每类问题都专门介绍和讨论有关的数学软件,包括在Internet上可以获得的免费软件和有版权保护的商业软件平台,供读者选用。 丰富的例题和习题,书中包括160多道例题,500多道思考题,240多道练习题和200多道数值计算题。 本书可作为研究生“数值分析”课程的教材或参考书,对于需要解决计算问题的科技人员,本书具有很高的参考价值。
本书是为工科、理科、数学系、计算机科学系的大学本科2-3年级学生和工科研究生编写的应用数值分析教材或参考书,也是工程技术人员的一本很好的工具书。因为书中介绍了许多数值方法,所以它也可以作为科技工作者常用的、有价值的参考文献。 本书包括:误差概念,非线性方程和方程组的解法,线性代数组的解法,插值和曲线拟合,函数逼近,数值微分和数值积分,常微分方程的数值解法,优化方法,偏微分方程,有限元方法。
本书介绍了计算机辅助工程分析的基本结构、工业界CAE应用范例、FEMLAB的菜单结构、有限元法简介,介绍了8种典型的形函数等。
Navier-Stokes方程是流体的经典方程。在本书中,我们将从线性的Stokes问题入手,研究如何利用协调有限元方法、有限体积方法以及非协调有限元方法高效求解。然后在强**解情况和非奇异解束两个层面研究定常Navier-Stokes方程理论和高效计算方法,同时介绍求解定常Navier-Stokes方程的三种迭代方法和针对较大雷诺数问题的Euler时空迭代方法。后研究了非定常Navier-Stokes方程的有限元离散方法以及高效全离散方法。
本书是一部为物理学专业的高年级本科生和研究生设计的,学习重整化群和场论教程,也是学习凝聚态和粒子物理的资料。本书简明扼要,开门见山、直奔主题自由能量的环膨胀,即著名的背景场理论。这一很有力的方法,尤其是在处理对称和统计力学的时候尤为重要。专著自由场的讲述,避免大篇幅赘述有关场理论技巧的发展,接着全面呈现重整化的必需性。 目次:一些著名结果;有序参数、对称性破缺性导论;Ising模型下的物理情形例子;Ising模型的一些结果;高温和低温扩张;相变有关的几何问题;临界行为的现象学描述;平均场理论;平均场之外;重整化群导论;φ4理论用的重整化群;重整化理论;Goldstone模;大n。 读者对象:物理专业的高年级本科生、研究生,以及对重整化、场论、凝聚态物理和粒子物理感兴趣的读者。