本书是作者在为数学专业本科生讲授高等代数过程中形成的习题课讲义,是本科生深入学习高等代数的重要学习资料,同时也为考研学生提高了高质量的自学资料。本书共分为9章,包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、λ-矩阵的标准形、欧几里得空间。各章均分为三部分,部分提供了系统、全面的知识点,帮助学生掌握高等代数的重要思想与方法;第二部分通过大量例题帮助学生开阔视野,拓宽解题思维;第三部分给出了大量习题并配有详细答案,对前两部分进行了有力补充。
本书是在作者编写的讲义基础上完成的,其中部分习题来自部分高校考研真题,所给出的解题方法具有典型意义,对考研复习具有较高的参考价值。其内容包括多项式、行列式、线性方程组、矩阵、二次型、线性空间、线性变换、欧式空间、双线性函数。每章由常用定理及结论、常见题型及解答两部分组成,常用定理及结论部分叙述了考研题解答很常用到的结论及相关定理,常见题型及解答部分给出了约600道常见考研题的解法,有的还给出了一题多解。本讲义在天水师范学院数学与应用数学专业“创新班”已连续使用了五年,效果很好。
考研数学复习全书 基础篇是针对硕士研究生入学考试的大三提前复习、在职考研及基础薄弱考生而编写。整本书包含考研数学要求的基本知识架构,以初等数学水平为起点。根据作者团队多年的考研辅导经验,帮助基础薄弱的同学,在较短时间内厘清考研数学(包括高等数学、线性代数、概率论和数理统计)的基本知识点,掌握入学考试所必需的基本概念、基本理论和基本计算方法,让数学基础薄弱甚至零基础的同学能有一个较大的提升和质的突破,实现“基础过关”,有助于后期读者高效复习,形成完整的知识体系。
本书按大纲常考知识点分为18讲,且全书内容均为张宇老师亲自独立编写完成,故书名称为《张宇高等数学18讲》。每一讲又分四个模块:考纲要求、内容精讲、例题精解和习题精练。考纲要求:编者将大纲对知识点的要求,以图表的形式,分数学一、数学二、数学三呈现给读者,更具针对性。考生可根据自己所考科目对号入座,首先做到将自己该了解、理解、会以及掌握哪些知识了然于胸。内容精讲:编者以轻松且类似于“面对面讲课”的语言形式精讲知识点,给读者虽在看书,但仿佛在听讲课般的非一般的感受。例题精解:例题选取均是作者从众多经典题目中认真筛选出来的,可谓经典中的经典。每道题目均具代表性,绝不是大量题目的简单堆砌。习题精练:习题的选择更具考查目的,均尽力模拟真题的形式来设置题目,且配有详尽的解析,真正具有锻炼价值。
本书是按照线性代数考试大纲规定的章节和题型进行分类解析的,将不同年份、相同的考点和题型的试题归纳在一起,并给出了详细的解答。本书中每类题型都给出了知识要点和解题思路,所有的试题都给出了详细的解答过程,并尽量做到一题多解,其中很多试题的解法是编者根据多年的考研辅导和教学经验总结出来的,具有独到之处。本书在每道题详解的基础之上,都给出了名师评注,达到举一反三,触类旁通的效果。
本书是数学类专业考研复习指导书.本书通过精选的名校真题,讲解典型问题的方法和技巧.全书共分八讲,包括极限、一元函数的连续性、一元函数的微分学、一元函数的积分学、级数、多元函数的微分学、多元函数的积分学、不等式.本次修订增补了从北大、南开、科学院、华东师范、大连理工、华南理工等院校最近两年真题中精选出来的六十多道题目,并删去或新增了一批例题后的类题本书适合作为自学材料,也可作为相关课程的培训教材.
生命是什么?对于这个生命本原性命题,当今分子生物学上最激动人心的回答是什么呢?日本著名生物学家、最受欢迎的科普大师福冈伸一,以其沉淀数十年的学术热情和生命思考,带领我们穿越20世纪的时空隧道。与众多鲜为人知的天才科学家并步而行,踏上寻找生命真相的终极历程——??????发现病毒的第一人是谁?世纪大发现DNA双螺旋结构是科学史上的一桩剽窃案吗?遗传的秘密藏在哪里?人类的未来会受少数掌握着克隆技术的人的控制吗?人的一生都在抗拒着什么?生命可以被重新组装或逆转重来吗?……一个个科学谜团的大幕被揭开,真理、智慧、人性在历史的舞台上比在幻想中更令人眼花缭乱、应接不暇。??????作者以其富有创见、充满灵感的思想和清澈明晰、生动幽默的文字,从生物学出发,逐步上升到哲学世界观的高度,引发人们对生命和自我认同的
《2017硕士研究生入学考试数学复习与解题指南》主要是为报考工科类和经管类硕士研究生的考生编写的,全书由高等数学、线性代数和概率统计三部分组成.其中前两部分与同济大学数学教研室编写、高等教育出版社出版的《高等数学》上、下册和《线性代数》教材紧密配合,同时增加部分外数学竞赛的典型题目。书中对各部分的重要概念和基本理论(定理和公式)作了系统的概括,着重讨论基本题型与解题方法,必要时对例题进行了详尽的分析和总结,以扩大学生思路,提高分析问题和解决问题的能力。 全书突出一个宗旨:力求使考生用较少的时间复习掌握好研究生考试大纲所规定的内容,获得较多的解题方法,以便取得更好成绩.《2017硕士研究生入学考试数学复习与解题指南》从历届考题和竞赛试题中筛选了近1200道典型例题,选辑了363道习题并附有习题简
全书共分八讲。讲介绍极限的思想、各种求解方法和证明极限存在的各种技巧;第二讲介绍函数一致连续性的思想和证明方法及技巧;第三讲介绍与微分中值定理(包括泰勒公式)有关的思想和解决问题的方法;第四讲介绍定积分的重要计算技巧和证明函数可积性的方法;第五讲介绍各类级数收敛性的判别方法和技巧,并对函数项级数和函数性质进行了详尽的讨论;第六讲介绍多元函数的各种性质及应用;第七讲介绍各类积分的计算方法和技巧,特别是第二类曲面积分;第八讲介绍证明不等式的常用方法和技巧。
本书是中国人民大学《高等代数简明教程(版)》的配套学习参考书,全书共包括八章内容:多项式、线性方程组和矩阵、矩阵代数、行列式、线性空间与线性变换、特征值与特征向量、正交性与最小二乘法以及实对称矩阵与二次型。每章内容均包括五部分:重点、难点提示,内容概述,典型题型解析,习题详解以及自测题。全书归纳讲解各章典型例题,全面解答教材课后习题,讲解相关考研试题,突出代数学在几何学、经济管理和生活中的应用。本书附录部分还收录了中国人民大学高等代数课程近年的部分期末试题,并给出了详细的答案,以便学生复习和测试。 本书可供经济、管理、计算机、统计、信息、物理、化学等专业学习高等代数或线性代数的学生参考、使用。