教学设计是指教师在教学过程中,依据教学的一般原理和教学内容、目标、要求,结合自身的经验和特点,从学生知识、能力状况的实际出发,对各种教学要素进行统筹整合,制订教学方案的技术性活动,它是根据教学对象和教学目标,确定适当的教学起点与终点,将教学诸要素有序地安排并优化,形成教学方案的过程. 本书共 7章,内容包括总论、随机事件与概率、一维随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、极限定理、数理统计.涉及教学设计总论和 24节课程教学设计,每节课程教学设计包括:教学目的、教学思想、教学分析(教学内容、教学重点、教学难点、对重点、难点的处理)、教学方法与策略(课堂教学设计思路、板书设计)、教学安排(教学进程框架、教学进程详细内容)和教学评价 6个部分.c
本书是为适应新工科背景下教学模式改革以及满足现代科学技术对概率论与数理统计的需求而编写的.主要内容包括:随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律及中心极限定理、样本及抽样分布、参数估计、假设检验及回归分析.本书取材广泛,实例丰富,每章配套的数学实验均采用流行的Python语言编写,突出了对学生应用数学能力的培养.每章的知识纵横栏目有助于拓展学生的视野,帮助学生深入理解相关知识点的来龙去脉和发展历史,进而增强学生的学习兴趣.本书各章均配有习题,书末附有答案. 本书简明易懂,注重理论联系实际,可作为高等院校理工科本科各专业概率论与数理统计课程的教材,也可作为科技人员和自学者的参考书籍.
暂无内容简介。。。。。。
本书是作者多年来给普林斯顿大学本科一年级学生开设微积分的每周复习课。本书专注于讲述解题技巧,目的是帮助读者学习一元微积分的主要概念。深入处理一些基本内容,还复习一些主题。本书不仅可以作为参考书,也可以作为教材,定会成为任何一位需要微积分知识人学习一元微积分的非常好的指导书。
暂无内容简介。。。。。。
《高数叔高等数学入门》是一套大学数学的入门课程,包括了微积分、线性代数以及概率统计的内容。本书以小知识点为单位,用生动幽默的语言、详细的标注、清晰明了的图片结合经典例子,将抽象复杂的线性代数知识讲解得浅显易懂。本书可以作为将要学习线性代数或者想要简单了解线性代数的读者的一本读物。
暂无内容简介。。。。。。
本书内容大多是从作者6年多以来积累的上千篇博客中节选而来的,分为 生活中的数学 、 数学之美 、 几何的大厦 、 精妙的证明 和 思维的尺度 五部分。书中基本不涉及高深的数学理论,但是内容新颖、时尚,既有与现实生活联系紧密的应用型话题,又有打通几何、代数联系的富有启发性的讨论,还间或介绍了一些著名数学难题的*研究进展,信息十分丰富。 本书是广大数学爱好者的美味佳肴,只要具备简单数学基础即能阅读。
打开这本书的读者可能已经对数学产生了一定的兴趣,在以往的学习中你也许体会到了数学的非凡魅力,然而你也可能心存疑惑:数学这座恢弘的大厦是如何建成的,其中到底装了哪些奇珍异宝? 代数主要关注数字和变量间的运算关系,也是与实际生活联系非常紧密的一个数学分支。在本书中,我们将通过代数这个窗口,带你踏上一段奇妙的数学探索之旅。这段旅途将穿越古希腊、古埃及、印度以及阿拉伯地区,我们将认识毕达哥拉斯、柏拉图、欧几里得、阿基米德、丢番图、斐波那契等伟大的数学家以及在数学发展中做出过重要贡献的杰出人物,我们将看到数学源远流长而又生机勃勃的一面。还等什么,让我们开始吧。
《微积分的历程:从牛顿到勒贝格》介绍了十多位数学家:牛顿、莱布尼茨、伯努利兄弟、欧拉、柯西、黎曼、刘维尔、魏尔斯特拉斯、康托尔、沃尔泰拉、贝尔、勒贝格。然而,这不是一本数学家的传记,而是一座展示微积分宏伟画卷的陈列室。作者选择介绍了历史上的若干杰作(重要定理),优雅地呈现了微积分从创建到完善的漫长、曲折的过程。 br 《微积分的历程:从牛顿到勒贝格》兼具趣味性和学术性,对基础知识的要求很低,可作为本科生、研究生和数学工作者的微积分补充读物,更是数学爱好者的佳肴。
在他十四岁时,伊恩·斯图尔特开始收集各种他感到有趣但又没有在学校教授的数学,因为他知道,在学校里学的数学并不是数学的全部。他发现,在学校里没有学到的数学其实十分有趣——事实上,其中很多会趣味十足,特别是当不需要担心通过考试或者正确求和时。 本书便是斯图尔特教授五十多年收藏的精选,是有趣的数学游戏、谜题、故事和八卦的大杂烩。大部分内容独立成篇,你可以从几乎任意一处着手阅读。此外,斯图尔特教授还记录下了海盗红胡子船长和考古学家科罗拉多·史密斯的寻宝冒险。作为参考,本书**后给出了那些有已知答案的问题的解答,以及一些供进一步探索的补充说明。 本书适合各种程度的数学爱好者阅读,可帮助培养数学学习兴趣以及破除数学畏惧心理。修订版对2012年版的译文进行了全面整理提升。斯图尔特教授五十多年收
三角学是一个古老的数学分支,它美丽而又神秘。 本书从历史发展的角度展现了三角学与其他诸多学科的紧密联系,阿涅西的女巫、高斯的启示、芝诺的遗憾……一连串有趣的故事构成了一幅美丽的画卷。全书共15章,历史、理论、趣闻、应用尽含其中,涵盖了三角学的所有精华部分。品读此书,你会感叹数学之美、人类之聪慧、科学发展之不易。 本书适合所有对数学特别是三角学感兴趣的读者阅读。
在2002年一篇曾引发数学界巨大反响的文章《一个数学家的叹息》中,保罗·洛克哈特猛烈抨击了美国中小学数学教育的现状:学生只是被要求记住公式,并在练习题中反复套用,而这一创造性过程应有的兴奋、喜悦乃到痛苦和挫败却不见了。 在洛克哈特看来,数学是一门艺术,而老师教授数学的方法应该是,向学生诚实地传递自己对于这门学科的热爱,激发和激励他们与生俱来的好奇心,并帮助和引导他们实际投身到这段迷人的旅途中去。 《度量 一首献给数学的情歌》正是洛克哈特这一思想的体现。他对数学的热爱在字里行间显露遗,同时他也不讳言旅途的艰难。《度量 一首献给数学的情歌》分为两个部分,分别介绍了对形状和运动的度量。他以平实的语言将几何学和微积分的复杂概念以及两者之间的精妙关联解释得清晰易懂,生动展示了数
《数学女孩》系列以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“绝赞的数学科普书”。 《数学女孩4:随机算法》以“随机算法”为主题,从纯粹的数学和计算机程序设计两个角度对随机算法进行了细致的讲解。内容涉及排列组合、概率、期望、线性法则、矩阵、顺序查找算法、二分查找算法、冒泡排序算法和快速排序算法等。整本书一气呵成,非常适合对数学和算法感兴趣的初高中生以及成人阅读。
本书介绍数学中的三大悖论(毕达哥拉斯悖论、贝克莱悖论、罗素悖论)与三次数学危 机,以时间为序,以环环相扣的数学家轶事为纲,带大家了解数学发展史,理解悖论的巨 大作用,以及认识欧几里得几何、无理数、微积分、集合论等的来龙去脉。书中穿插大量 数学家的逸事,融知识性与趣味性于一体。本书这一版专门添加附录介绍了哥德尔证明。
本书为线性代数入门的科普读物,书中以“如何理解线性代数”“如何理解矩阵的基础概念与计算方法”为线索,用漫画故事生动呈现了线性代数初学者的学习历程。作者从学习者的角度出发,结合生活例子讲解了线性代数中的基础概念及实际应用意义,解答了初学者在的常见困惑。本书讲解直观、通俗,适合作为正式学习线性代数前的入门读本,也适合作为了解线性代数原理的科普读物。
我们是如此需要数学,以至于从远古时代的古巴比伦人开始就已经积累了一定的数学知识。不过,那时的数学还只是观察和经验所得,没有烦琐且枯燥的证明。经过漫长的发展,数学逐渐成为学习和研究现代科学技术必不可少的基本工具,但同时它也成为让不少学生十分苦恼的一门课程。本书汲取最原始的经验,从生活出发,通过有趣的画图练习和模型制作等,向读者展示自然、空间以及时间里的数学知识。“一沙一世界,一花一天堂。”飘落的雪花是几何,太阳、月亮的运转是周期,叶子的节点是数列……换个方式看数学,你将发现自然的美丽及宇宙的秩序。
本书强调抽象的向量空间和线性映射, 内容涉及多项式、本征值、本征向量、内积空间、迹与行列式等. 本书在内容编排和处理方法上与国内通行的做法大不相同, 它完全抛开行列式, 采用更直接、更简捷的方法阐述了向量空间和线性算子的基本理论. 书中对一些术语、结论、数学家、证明思想和启示等做了注释, 不仅增加了趣味性, 还加强了读者对一些概念和思想方法的理解.
从基本的矿物、植物、动物以及人类到螺旋、旋涡、芽苞等具有复杂形状的事物,本书以 500 多张彩色图片展现了各种事物的几何学特性。作者通过对大自然最简单的观察以及最细腻复杂的测量等手段,意欲告诉我们可以从身边的任何事物中找到几何学的身影;他还利用射影几何学证明了,大自然中所有奇奇怪怪的体态其实都是依据最基本的几何学原理“制造”而成的,而这些原理之间的重要差异则造就了我们宇宙中如此纷繁多样的形状。
本书为日本数学教育议会创立者远山启的数学教育科普作品。书中通俗解读了数学教育中的重点、难点知识,用直观的方式梳理了“量与数”“集合与逻辑”“空间与图形”“变数与函数”的知识体系,并结合作者多年的教学与研究经验,向读者传授教学方法与学习技巧,引导学习者掌握具有发展性的思考方法,真正从原理上理解数学知识。 本书适合数学爱好者阅读学习,也适合作为教师教学、家长辅导的参考指南。
本书从历史的视角向我们娓娓讲述数字迷人的发展史,从数字的发明到各种运算符号,从零的出现到* 越数的神奇,从十进制到现代的信息论,从第一台计算机的发明到人类计时的方式,展示了数字是如何从生活中来,又是如何影响着我们周围的方方面面的。 你可知道除号原来是一把短剑的样子?你可知道简单如1、2、3这样的数字几乎毁灭了数学?到底什么是虚数?阅读过程中,你会遇到古代的贤者,他们会告诉你何为数字,以及如何使用数字。你还会看到关于数学大师的奇奇怪怪的故事,例如对数的发明人员约翰·纳皮尔手不释鸡,斐波那契用兔子展示数列。 数字表面上看着简单,其实颠覆你的想象。本书将带你踏上全新的旅程,走进美妙的数学世界;为你打开数字的历史之门,探索漫长岁月中惊人、迷人而又恼人的数学,展示比1、2、3丰富得多的数字