本书涵盖了2016 2025年考研数学一、数学二、数学三的全部真题,精选了1987 2015年考研各卷种中有一定难度或代表性的真题,并配有详细解析,供考生进行练习.本书将真题按考点分类,每一节均分为十年真题、考点分析、知识梳理、方法探究、真题精选五个部分.不但梳理了《全国硕士研究生招生考试数学考试大纲》所要求的每一个知识点,而且通过例题详细讲解了主要的方法,并对每一节内容作了小结,归纳考研近年来的命题趋势,旨在使考生全面准确地了解考研数学。
内容介绍 八年前, 数学之美 系列文章原刊载于谷歌黑板报,获得上百万次点击,得到读者高度评价。读者说,读了 数学之美 ,才发现大学时学的数学知识,比如马尔可夫链、矩阵计算,甚到余弦函数原来都如此亲切,并且栩栩如生,才发现自然语言和信息处理这么有趣。 在纸本书的创作中,作者几乎把所有文章都重写了一遍,为的是把高深的数学原理讲得更加通俗易懂,让非专业读者也能领略数学的魅力。读者通过具体的例子学到的是思考问题的方式 如何化繁为简,如何用数学去解决工程问题,如何跳出固有思维不断去思考创新。 本书*一版荣获国家图书馆第八届文津图书奖。*二版增加了针对大数据和机器学习的内容。第三版增加了三章新内容,分别介绍当今非常热门的三个主题:区
本书为日本数学家、菲尔兹奖得主广中平祐的思想文集。书中以“创造性思维”为线索,讲述了作者在数学研究中总结出的思考模式——“可变思考”,并在问题的发现、提出、整理、转换等方面做了具体阐述,让读者了解数学家独特的多维度思考方法。同时,本书还对日本数学教育中的问题做了分析,提出了学校教育、*子教育中培养创造性思维的原则与方法。本书是广中平祐先生对自己研究方法的系统性总结,是了解其思想以及日本数学研究方法的珍贵资料。
面积法是一种有着悠久历史的传统方法。近几十年来, 面积法体系得到进一步的发展, 焕发出新的生命力, 如今已成为平面几何中的基本方法,甚*成为解决很多几何难题的通法。 本书介绍了用面积法解题的基本工具 (共边定理和共角定理) 以及指导思想 (消点法), 并辅以大量例题来说明用面积法解题的有效性。 另外, 书中还介绍了面积法与勾股定理、 托勒密定理等的关系, 以及面积法在不等式、 三角等多个数学分支中的应用。 本书以面积法为主线, 串接了许多有趣的数学内容, 适合中小学师生以及数学爱好者阅读。 我们很高兴看到读者对我们的认可。现在,我们对这本书进行了完善并重新出版,希望能对你学*几何有一点帮助 .
内容简介 眼睛是人们感知世界的窗口,被称为“心灵的窗户”。然而,眼睛却非常娇嫩,需要人们悉心呵护。 本书用形象的比喻、诙谐幽默的描述向读者传递眼睛的相关知识。首先,阐释了自然界中各种动物的奇特眼睛及真给人类带来的启迪,以唤起读者对眼睛的好奇和兴趣。其次,描述了人类眼睛鲜为人知的“奇闺趣视”,从科学的角度解释日常用眼过程中遇到的一些问题,进一步激发读者不断去探索眼睛的奥秘。再次,用深入浅出的方法,从专业角度介绍眼睛的结构、工作奥秘以及人类眼睛成长与衰老的过程。最后,介绍了眼睛常见疾病的陆治和相 目录 目录总序 / i前言 / iii章 探秘神奇的眼睛 / 001节 动物世界奇特的眼睛 / 002一、视力“动”“静”迥
本书为日本数学家、沃尔夫奖、高斯奖、京*奖得主伊藤清的数学思想文集。书中梳理了他学习数学、走上数学研究道路的经历,收录了他关于“数学与科学”“直观与逻辑”“纯粹数学与应用数学”“数学的科学性与艺术性”等方面的思考,同时也完整记录了他创立的“伊藤引理”的过程与感悟。本书是了解伊藤清数学思想的珍贵资料,也可作为了解概率论相关概念与发展的读本。本书适合数学专业的大学师生阅读,也可作为一般读者了解数学的启蒙读物。
本书以独特的视角呈现线性代数的全貌,*覆盖了线性空间与线性映射、矩阵与行列式、谱理论、欧几里得结构等核心理论,还单独讨论了向量值与矩阵值函数的微积分、动力学、凸集、赋范线性空间、自伴随矩阵的本征值计算等特色专题,理论和应用相结合。每章*有练习,并为部分练习提供解答。书后还有辛矩阵、快速傅里叶变换、洛伦兹群、若尔当标准形等16个附录。
本书是为适应新工科背景下教学模式改革以及满足现代科学技术对概率论与数理统计的需求而编写的.主要内容包括:随机事件及其概率、随机变量及其分布、多维随机变量及其分布、随机变量的数字特征、大数定律及中心极限定理、样本及抽样分布、参数估计、假设检验及回归分析.本书取材广泛,实例丰富,每章配套的数学实验均采用流行的Python语言编写,突出了对学生应用数学能力的培养.每章的知识纵横栏目有助于拓展学生的视野,帮助学生深入理解相关知识点的来龙去脉和发展历史,进而增强学生的学习兴趣.本书各章均配有习题,书末附有答案. 本书简明易懂,注重理论联系实际,可作为高等院校理工科本科各专业概率论与数理统计课程的教材,也可作为科技人员和自学者的参考书籍.
理解数学需要具备一种纯粹的感觉,即 数感 。本书为日本数学家、菲尔兹奖与沃尔夫奖得主小平邦彦先生的思想随笔文集,书中收录了小平邦彦先生对数学、数学教育的深思、感悟文章,记述了数学家对 数学 数感 的独到理解,文笔幽默,深入浅出。同时,书中还辑录了小平邦彦先生在普林斯顿高等研究院时期,与赫尔曼?外尔等数学大家交流的趣闻轶事,对深入理解数学、数学教育具有深刻启示。
本书是分析领域内的一部经典著作。主要内容包括:抽象积分、正博雷尔测度、LP-空间、希尔伯特空间的初等理论、巴拿赫空间技巧的例子、复测度、微分、积空间上的积分、傅里叶变换、全纯函数的初等性质、调和函数、*大模原理、有理函数逼近、共形映射、全纯函数的零点、解析延拓、HP-空间、巴拿赫代数的初等理论、全纯傅里叶变换、用多项式一致逼近等。另外,书中还附有大量设计巧妙的习题。本书体例优美,实用性很强,列举的实例简明精彩,基本上对所有给出的命题都进行了论证,适合作为高等院校数学专业高年级本科生和研究生的教材。
《数学女孩》以小说的形式展开,重点描述一群年轻人探寻数学中的美。内容由浅入深,数学讲解部分十分精妙,被称为“绝赞的初等数学科普书”。内容涉及数列和数学模型、斐波那契数列、卷积、调和数、泰勒展开、巴塞尔问题、分拆数等,非常适合对数学感兴趣的初高中生以及成人阅读。
《考研数学基础解析120讲》是作者在多年辅导教学的讲义基础上,为帮助大学非数学专业本科生复习公共数学基础课程和准备参加全国硕士研究生招生考试而编写的辅导教材.本书将“高等数学”分为60讲,“线性代数”分为30讲,“概率论与数理统计”分为30讲,共计120讲.各讲内容配备的典型例题经过作者仔细斟酌挑选,具有针对性,尽量做到例题的命题角度巧,角度比较新,难度把握准.各讲后面均配有能力训练题,题的设计严谨、独特,与典型例题一脉相承,有些题是作者多年的积累和根据考试的命题特点自己进行命制的,题量不大,基本是十道题以内.对于有一些难度的习题,给出了比较详细的解答过程,但希望考生在自己练习时要勤思、多思、总结,要努力提升自身的能力。
本书对考研大纲所要求的知识点进行全面阐述,并对考试重点、难点以及常考知识点进行深度剖析,注重对所学知识的应用,以便能够开阔考生的解题思路,使所学知识融会贯通,并能灵活地解决问题。本书优化设计了数量的练习题,巩固所学知识,提高实际解题能力,实现知识掌握、习题解答的统一。
《2017硕士研究生入学考试数学复习与解题指南》主要是为报考工科类和经管类硕士研究生的考生编写的,全书由高等数学、线性代数和概率统计三部分组成.其中前两部分与同济大学数学教研室编写、高等教育出版社出版的《高等数学》上、下册和《线性代数》教材紧密配合,同时增加部分外数学竞赛的典型题目。书中对各部分的重要概念和基本理论(定理和公式)作了系统的概括,着重讨论基本题型与解题方法,必要时对例题进行了详尽的分析和总结,以扩大学生思路,提高分析问题和解决问题的能力。 全书突出一个宗旨:力求使考生用较少的时间复习掌握好研究生考试大纲所规定的内容,获得较多的解题方法,以便取得更好成绩.《2017硕士研究生入学考试数学复习与
《2013曹显兵考研数学概率论与数理统计辅导讲义》共分六章,编写特点如下: 一、《2013曹显兵考研数学概率论与数理统计辅导讲义》在每章的开头给出了考研大纲所规定的考试内容与考试要求,并且对考试内容作了规范的描述与讲解。 二、本书力求用最少的篇幅帮助考生理解基本概念,掌握基本原理、基本方法和公式。一方面,编者通过精心选取、重新编制设计题目,使得本书所选例题更具代表性,考生更容易理清解题思路、熟悉常用方法与技巧;另一方面,借助于许多典型例题的评注,帮助读者更好地把握典型例题的典型处理方法和各种可能的延伸,从而达到举一反三、触类旁通的效果。另外,对于真正掌握一门课程内容并通过相关考试来说,做数量的习题是必不可少的。为此,编者按照填空题、选择题和解答题的顺序编制了数量的习题,供读者模拟练
内容提要《考研数学复习教程(数学一和数学二适用)》包括以下部分:一、考核内容要点———本部分对《数学考试大纲》所要求的内容进行了全面、透彻的讲解,注重对基本概念、基本理论和基本方法的解读。二、补充公式与结论———本部分对一般教材中没有的、但对知识理解和解题有益的公式和结论进行了较为全面的补充,并对难于理解的公式和结论给出了证明或举例说明。三、典型问题与方法技巧———本部分是本书的精华也是本书的特色:在对历年试题研读的基础上,详细归纳总结了每部分考过的以及可能考到的各类问题,抛开其表面形式,剖析出其本质特征,给出了每类问题的快捷有效的处理方法,并注重每类问题的各种变式,使读者能够见到题目就知从哪入手,并快速准确求解。四、强化训练———本部分试题的难易程度十分贴近考研真题,有的
本书共分为四篇九章,每一章按内容体系分成若干节,每一节又分为内容精讲、综合题解和习题三部分。 内容精讲部分以充实严谨、深入浅出、形象生动的方式将离散数学的主要内容展现在读者面前,对于难以理解的概念和定理配以例题、插图或漫画,能够加深读者对基本概念和基本定理的理解; 综合题解部分选编了大量的经典例题,着重于解题思路和方法的引导; 习题部分精选了多道与本节重点内容相关的典型练习题,使得读者可以在做题的过程中巩固已学的知识。 书中对重点和难点内容作了注解,对题目的难度按等级作了标注,使得不同程度的学生都能从中获益。 本书可作为高等院校工科离散数学课程的教学参考书以及硕士研究生入学考试的辅导书,也可以作为其他需要学习离散数学的相关人员的参考读物。
本书从历史的视角向我们娓娓讲述数字迷人的发展史,从数字的发明到各种运算符号,从零的出现到* 越数的神奇,从十进制到现代的信息论,从第一台计算机的发明到人类计时的方式,展示了数字是如何从生活中来,又是如何影响着我们周围的方方面面的。 你可知道除号原来是一把短剑的样子?你可知道简单如1、2、3这样的数字几乎毁灭了数学?到底什么是虚数?阅读过程中,你会遇到古代的贤者,他们会告诉你何为数字,以及如何使用数字。你还会看到关于数学大师的奇奇怪怪的故事,例如对数的发明人员约翰·纳皮尔手不释鸡,斐波那契用兔子展示数列。 数字表面上看着简单,其实颠覆你的想象。本书将带你踏上全新的旅程,走进美妙的数学世界;为你打开数字的历史之门,探索漫长岁月中惊人、迷人而又恼人的数学,展示比1、2、3丰富得多的数字
本书是基于作者多年来在北京大学讲授"组合数学" 课程的讲义补充、修改而成的, 内容包括组合计数、存在性结果、图论基础、集合相交理论、组合设计、组合的代数和概率方法等. 本书注重对基本概念、基本理论和基本方法的理解和掌握, 强调组合思想及组合数学在各个领域的应用. 全书分为十章, **章给出了本书用到的一些基本概念以及初等计数方法; 第二章至第五章给出几种组合计数的方法, 如递推关系、生成函数、容斥原理、Polya 计数定理等, 以及几个重要的组合数, 如Catalan 数、Stirling 数、分拆数等; 第六章给出鸽笼原理以及它的推广 Ramsey 理论和相异代表系等存在性结果; 第七章介绍了图论的基础知识; 第八章介绍了初步的集合相交理论; 第九章详细介绍了组合设计理论; 第十章简要介绍了组合数学的概率方法. 书中每章之后都配有丰富的习题, 书末给
基本信息 书名: 几何原本(全新修订本) 作者: (古希腊)欧几里得|译者:邹忌 开本: *: 58 页数: 现价: 见顶部 出版时间 2014-08-01 书号: 9787229071578 印刷时间: 出版社: 重庆出版社 版次: 商品类型: 正版图书 印次: 内容提要 作者简介 欧几里得(公元前325年 公元前265年),古希腊数学家,被称为 几何之父 。他活跃于托勒密一世时期的亚历山大里亚,他最著名的著作《几何原本》是欧洲数学的基础,总结了平面几何五大公设,被广泛的认为是历*成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品。 译者简介:邹忌, 1977年生于上海,职业翻译人,毕业于中国邮电大学。致力于西方名著的翻译,尤以翻译科普读物成绩卓著。 译作有《笛卡尔哲学原理》、《自然哲
本书是按照线性代数考试大纲规定的章节和题型进行分类解析的,将不同年份、相同的考点和题型的试题归纳在一起,并给出了详细的解答。本书中每类题型都给出了知识要点和解题思路,所有的试题都给出了详细的解答过程,并尽量做到一题多解,其中很多试题的解法是编者根据多年的考研辅导和教学经验总结出来的,具有独到之处。本书在每道题详解的基础之上,都给出了名师评注,达到举一反三,触类旁通的效果。